• Title/Summary/Keyword: multivariate time series

Search Result 145, Processing Time 0.019 seconds

다변량 시계열 자료를 이용한 부정맥 예측 (Prediction of arrhythmia using multivariate time series data)

  • 이민혜;노호석
    • 응용통계연구
    • /
    • 제32권5호
    • /
    • pp.671-681
    • /
    • 2019
  • 최근에 부정맥 환자가 증가하면서 머신러닝을 이용한 부정맥을 예측하는 연구가 활발하게 진행되고 있다. 기존의 많은 연구들은 특정한 시점의 RR 간격 데이터에서 추출한 특징변수 다변량 데이터에 기반하여 부정맥을 예측하였다. 본 연구에서는 심장 상태가 시간에 따라 변해가는 패턴도 부정맥 예측에 중요한 정보가 될 수 있다고 생각하여 일정한 시간 간격을 두고 특징변수의 다변량 벡터를 추출하여 쌓음으써 얻어지는 다변량 시계열 데이터로 부정맥을 예측하는 것의 유용성에 대해 살펴보았다. 1-Nearest Neighbor 방법과 그것을 앙상블(ensemble)한 learner를 중심으로 비교했을 경우 시계열의 특징을 고려한 적절한 시계열 거리함수를 선택하여 시계열 정보를 활용한 다변량 시계열 데이터 기반 방법의 분류 성능이 더 좋게 나오는 것을 확인하였다.

다변량 고빈도 금융시계열의 변동성 분석 (Multivariate volatility for high-frequency financial series)

  • 이근주;황선영
    • 응용통계연구
    • /
    • 제30권1호
    • /
    • pp.169-180
    • /
    • 2017
  • 본 논문은 다변량 변동성을 다루고 있다. 최근 들어 활발하게 연구가 되고 있는 고빈도(high frequency)자료에 기초한 변동성 측정방법인 실현변동성을 계산하고 기존의 다변량 GARCH 모형과 비교분석하였다. 정준상관분석과 VaR분석을 이용하여 실현변동성과 다양한 다변량 GARCH 모형을 비교하였으며 최근 6년 동안의 삼성전자/현대차 거래 가격 고빈도 데이터를 이용하여 실증분석을 실시하였다.

다변량 지수평활모형을 이용한 환율 분석 (Multivariate exponential smoothing models with application to exchange rates)

  • 이연하;성병찬
    • 응용통계연구
    • /
    • 제33권3호
    • /
    • pp.257-267
    • /
    • 2020
  • 본 논문은 단변량 지수평활법의 확장된 형태인 다변량 지수평활법을 소개하고 다변량 시계열 분석에 활용한다. 다변량 지수평활법은 한 개의 오차를 기반으로 하는 상태공간모형을 이용하여 추정의 편리성을 제고하며, 다변량 시계열간의 잠재적인 상호연관성을 활용하여 적합도 및 예측력을 향상시킨다. 다변량 지수평활법의 성능을 평가하기 위하여 월별 원/달러 및 원/파운드 환율자료를 분석하고 예측한다. 대안 모형의 예측 결과와 비교하여 다변량 지수평활법의 우수성을 확인한다.

다변량 비정상 계절형 시계열모형의 예측력 비교 (Comparison of Forecasting Performance in Multivariate Nonstationary Seasonal Time Series Models)

  • 성병찬
    • Communications for Statistical Applications and Methods
    • /
    • 제18권1호
    • /
    • pp.13-21
    • /
    • 2011
  • 본 논문에서는 계절성을 가지는 다변량 비정상 시계열자료의 분석 방법을 연구한다. 이를 위하여, 3가지의 다변량 시계열분석 모형(계절형 공적분 모형, 계절형 가변수를 가지는 비계절형 공적분 모형, 차분을 이용한 벡터자기회귀모형)을 고려하고, 한국의 실제 거시경제 자료를 이용하여 3가지 모형의 예측력을 비교한다. 공적분 모형은 단기적 예측에서 우수하였고, 장기적 예측에서는 차분을 이용한 벡터자기회귀모형이 우수하였다.

Multivariate GARCH and Its Application to Bivariate Time Series

  • Choi, M.S.;Park, J.A.;Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권4호
    • /
    • pp.915-925
    • /
    • 2007
  • Multivariate GARCH has been useful to model dynamic relationships between volatilities arising from each component series of multivariate time series. Methodologies including EWMA(Exponentially weighted moving-average model), DVEC(Diagonal VEC model), BEKK and CCC(Constant conditional correlation model) models are comparatively reviewed for bivariate time series. In addition, these models are applied to evaluate VaR(Value at Risk) and to construct joint prediction region. To illustrate, bivariate stock prices data consisting of Samsung Electronics and LG Electronics are analysed.

  • PDF

Effect of Dimension Reduction on Prediction Performance of Multivariate Nonlinear Time Series

  • Jeong, Jun-Yong;Kim, Jun-Seong;Jun, Chi-Hyuck
    • Industrial Engineering and Management Systems
    • /
    • 제14권3호
    • /
    • pp.312-317
    • /
    • 2015
  • The dynamic system approach in time series has been used in many real problems. Based on Taken's embedding theorem, we can build the predictive function where input is the time delay coordinates vector which consists of the lagged values of the observed series and output is the future values of the observed series. Although the time delay coordinates vector from multivariate time series brings more information than the one from univariate time series, it can exhibit statistical redundancy which disturbs the performance of the prediction function. We apply dimension reduction techniques to solve this problem and analyze the effect of this approach for prediction. Our experiment uses delayed Lorenz series; least squares support vector regression approximates the predictive function. The result shows that linearly preserving projection improves the prediction performance.

다변량 GARCH 모형의 CCC 및 ECCC 비교분석 (Extended Constant Conditional Correlation (ECCC) Model for Multivariate GARCH Time Series: an Illustration)

  • 이승연;황선영
    • 응용통계연구
    • /
    • 제27권7호
    • /
    • pp.1219-1228
    • /
    • 2014
  • 다변량 금융시계열 분석모형인 상수조건부상관(CCC)에 대해 알아보았으며, 개개 변동성간의 상호작용을 함께 고려한 확장된 상수조건부상관(ECCC)을 소개하고 국내 금융시계열에 적용하였다. 다양한 이변량 수익률 자료를 통해 CCC와 ECCC를 비교분석하였다.

A Simultaneous Test for Multivariate Normality and Independence with Application to Univariate Residuals

  • Park, Cheol-Yong
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권1호
    • /
    • pp.115-122
    • /
    • 2006
  • A test is suggested for detecting deviations from both multivariate normality and independence. This test can be used for assessing the normality and independence of univariate time series residuals. We derive the limiting distribution of the test statistic and a simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we apply our method to a real data of time series.

  • PDF

다변량 시계열 이상 탐지 과업에서 비지도 학습 모델의 성능 비교 (A Survey on Unsupervised Anomaly Detection for Multivariate Time Series)

  • 임주완;이재구
    • 정보보호학회논문지
    • /
    • 제33권1호
    • /
    • pp.1-12
    • /
    • 2023
  • 다변량 시계열 이상 탐지 과업에서 정답 값이 존재하는 데이터를 얻는 것은 매우 시간 집약적인 일이다. 따라서 최근 정답 값이 필요 없는 비지도 학습법(unsupervised learning)에 관한 많은 연구가 진행되었다. 하지만 다변량 시계열 이상 탐지 과업에 특화된 주요 구조와 세부적인 특성에 대한 심화 있는 논의는 이루어지지 않았다. 본 논문에서는 비지도 학습 기반의 다변량 시계열 이상 탐지 모델과 특장점을 포괄적으로 분석하여 분류하였다. 전력 계통(power grid) 또는 Cyber Physical System(CPS)과 같은 현실 세계 데이터 집합에서 현실적인 이상 상황을 고려하여 학습을 진행하였고, 실험 결과를 바탕으로 각 모델의 정량적 성능을 비교 분석하였다. 성능 지표로는 정밀도(precision), 재현율(recall)과 F1 점수를 사용하여 성능을 측정하였다.

Efficient Compression Algorithm with Limited Resource for Continuous Surveillance

  • Yin, Ling;Liu, Chuanren;Lu, Xinjiang;Chen, Jiafeng;Liu, Caixing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권11호
    • /
    • pp.5476-5496
    • /
    • 2016
  • Energy efficiency of resource-constrained wireless sensor networks is critical in applications such as real-time monitoring/surveillance. To improve the energy efficiency and reduce the energy consumption, the time series data can be compressed before transmission. However, most of the compression algorithms for time series data were developed only for single variate scenarios, while in practice there are often multiple sensor nodes in one application and the collected data is actually multivariate time series. In this paper, we propose to compress the time series data by the Lasso (least absolute shrinkage and selection operator) approximation. We show that, our approach can be naturally extended for compressing the multivariate time series data. Our extension is novel since it constructs an optimal projection of the original multivariates where the best energy efficiency can be realized. The two algorithms are named by ULasso (Univariate Lasso) and MLasso (Multivariate Lasso), for which we also provide practical guidance for parameter selection. Finally, empirically evaluation is implemented with several publicly available real-world data sets from different application domains. We quantify the algorithm performance by measuring the approximation error, compression ratio, and computation complexity. The results show that ULasso and MLasso are superior to or at least equivalent to compression performance of LTC and PLAMlis. Particularly, MLasso can significantly reduce the smooth multivariate time series data, without breaking the major trends and important changes of the sensor network system.