최근에 부정맥 환자가 증가하면서 머신러닝을 이용한 부정맥을 예측하는 연구가 활발하게 진행되고 있다. 기존의 많은 연구들은 특정한 시점의 RR 간격 데이터에서 추출한 특징변수 다변량 데이터에 기반하여 부정맥을 예측하였다. 본 연구에서는 심장 상태가 시간에 따라 변해가는 패턴도 부정맥 예측에 중요한 정보가 될 수 있다고 생각하여 일정한 시간 간격을 두고 특징변수의 다변량 벡터를 추출하여 쌓음으써 얻어지는 다변량 시계열 데이터로 부정맥을 예측하는 것의 유용성에 대해 살펴보았다. 1-Nearest Neighbor 방법과 그것을 앙상블(ensemble)한 learner를 중심으로 비교했을 경우 시계열의 특징을 고려한 적절한 시계열 거리함수를 선택하여 시계열 정보를 활용한 다변량 시계열 데이터 기반 방법의 분류 성능이 더 좋게 나오는 것을 확인하였다.
본 논문은 다변량 변동성을 다루고 있다. 최근 들어 활발하게 연구가 되고 있는 고빈도(high frequency)자료에 기초한 변동성 측정방법인 실현변동성을 계산하고 기존의 다변량 GARCH 모형과 비교분석하였다. 정준상관분석과 VaR분석을 이용하여 실현변동성과 다양한 다변량 GARCH 모형을 비교하였으며 최근 6년 동안의 삼성전자/현대차 거래 가격 고빈도 데이터를 이용하여 실증분석을 실시하였다.
본 논문은 단변량 지수평활법의 확장된 형태인 다변량 지수평활법을 소개하고 다변량 시계열 분석에 활용한다. 다변량 지수평활법은 한 개의 오차를 기반으로 하는 상태공간모형을 이용하여 추정의 편리성을 제고하며, 다변량 시계열간의 잠재적인 상호연관성을 활용하여 적합도 및 예측력을 향상시킨다. 다변량 지수평활법의 성능을 평가하기 위하여 월별 원/달러 및 원/파운드 환율자료를 분석하고 예측한다. 대안 모형의 예측 결과와 비교하여 다변량 지수평활법의 우수성을 확인한다.
Communications for Statistical Applications and Methods
/
제18권1호
/
pp.13-21
/
2011
본 논문에서는 계절성을 가지는 다변량 비정상 시계열자료의 분석 방법을 연구한다. 이를 위하여, 3가지의 다변량 시계열분석 모형(계절형 공적분 모형, 계절형 가변수를 가지는 비계절형 공적분 모형, 차분을 이용한 벡터자기회귀모형)을 고려하고, 한국의 실제 거시경제 자료를 이용하여 3가지 모형의 예측력을 비교한다. 공적분 모형은 단기적 예측에서 우수하였고, 장기적 예측에서는 차분을 이용한 벡터자기회귀모형이 우수하였다.
Journal of the Korean Data and Information Science Society
/
제18권4호
/
pp.915-925
/
2007
Multivariate GARCH has been useful to model dynamic relationships between volatilities arising from each component series of multivariate time series. Methodologies including EWMA(Exponentially weighted moving-average model), DVEC(Diagonal VEC model), BEKK and CCC(Constant conditional correlation model) models are comparatively reviewed for bivariate time series. In addition, these models are applied to evaluate VaR(Value at Risk) and to construct joint prediction region. To illustrate, bivariate stock prices data consisting of Samsung Electronics and LG Electronics are analysed.
The dynamic system approach in time series has been used in many real problems. Based on Taken's embedding theorem, we can build the predictive function where input is the time delay coordinates vector which consists of the lagged values of the observed series and output is the future values of the observed series. Although the time delay coordinates vector from multivariate time series brings more information than the one from univariate time series, it can exhibit statistical redundancy which disturbs the performance of the prediction function. We apply dimension reduction techniques to solve this problem and analyze the effect of this approach for prediction. Our experiment uses delayed Lorenz series; least squares support vector regression approximates the predictive function. The result shows that linearly preserving projection improves the prediction performance.
Journal of the Korean Data and Information Science Society
/
제17권1호
/
pp.115-122
/
2006
A test is suggested for detecting deviations from both multivariate normality and independence. This test can be used for assessing the normality and independence of univariate time series residuals. We derive the limiting distribution of the test statistic and a simulation study is conducted to study the accuracy of the limiting distribution in finite samples. Finally, we apply our method to a real data of time series.
다변량 시계열 이상 탐지 과업에서 정답 값이 존재하는 데이터를 얻는 것은 매우 시간 집약적인 일이다. 따라서 최근 정답 값이 필요 없는 비지도 학습법(unsupervised learning)에 관한 많은 연구가 진행되었다. 하지만 다변량 시계열 이상 탐지 과업에 특화된 주요 구조와 세부적인 특성에 대한 심화 있는 논의는 이루어지지 않았다. 본 논문에서는 비지도 학습 기반의 다변량 시계열 이상 탐지 모델과 특장점을 포괄적으로 분석하여 분류하였다. 전력 계통(power grid) 또는 Cyber Physical System(CPS)과 같은 현실 세계 데이터 집합에서 현실적인 이상 상황을 고려하여 학습을 진행하였고, 실험 결과를 바탕으로 각 모델의 정량적 성능을 비교 분석하였다. 성능 지표로는 정밀도(precision), 재현율(recall)과 F1 점수를 사용하여 성능을 측정하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권11호
/
pp.5476-5496
/
2016
Energy efficiency of resource-constrained wireless sensor networks is critical in applications such as real-time monitoring/surveillance. To improve the energy efficiency and reduce the energy consumption, the time series data can be compressed before transmission. However, most of the compression algorithms for time series data were developed only for single variate scenarios, while in practice there are often multiple sensor nodes in one application and the collected data is actually multivariate time series. In this paper, we propose to compress the time series data by the Lasso (least absolute shrinkage and selection operator) approximation. We show that, our approach can be naturally extended for compressing the multivariate time series data. Our extension is novel since it constructs an optimal projection of the original multivariates where the best energy efficiency can be realized. The two algorithms are named by ULasso (Univariate Lasso) and MLasso (Multivariate Lasso), for which we also provide practical guidance for parameter selection. Finally, empirically evaluation is implemented with several publicly available real-world data sets from different application domains. We quantify the algorithm performance by measuring the approximation error, compression ratio, and computation complexity. The results show that ULasso and MLasso are superior to or at least equivalent to compression performance of LTC and PLAMlis. Particularly, MLasso can significantly reduce the smooth multivariate time series data, without breaking the major trends and important changes of the sensor network system.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.