• Title/Summary/Keyword: multivariate normal distribution

Search Result 103, Processing Time 0.023 seconds

Characteristics of Kill Probability Distribution of Air Track Within the Engagement Space Using Multivariate Probability Density Function & Bayesian Theorem (다변량 확률밀도함수와 베이지안 정리를 이용한 교전공간내 공중항적의 격추확률 분포 특성)

  • Hong, Dong-Wg;Aye, Sung-Man;Kim, Ju-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.6
    • /
    • pp.521-528
    • /
    • 2021
  • In order to allocate an appropriate interceptor weapon to an air track for which the threat assessment has been completed, it is necessary to evaluate the suitability of engagement in consideration of the expected point of engagement. In this thesis, a method of calculating the kill probability is proposed according to the position in the engagement space using Bayesian theorem with multivariate attribute information such as relative distance, approach azimuth angle, and altitude of the air track when passing through the engagement space. As a result of the calculation, it was confirmed that the distribution form of the kill probability value for each point in the engagement space follows a multivariate normal distribution based on the optimal predicted intercepting point. It is expected to be applicable to the engagement suitability evaluation of the engagement space.

Power Exponential Distributions

  • Zheng, Shimin;Bae, Sejong;Bartolucci, Alfred A.;Singh, Karan P.
    • International Journal of Reliability and Applications
    • /
    • v.4 no.3
    • /
    • pp.97-111
    • /
    • 2003
  • By applying Theorem 2.6.4 (Fang and Zhang, 1990, p.66) the dispersion matrix of a multivariate power exponential (MPE) distribution is derived. It is shown that the MPE and the gamma distributions are related and thus the MPE and chi-square distributions are related. By extending Fang and Xu's Theorem (1987) from the normal distribution to the Univariate Power Exponential (UPE) distribution an explicit expression is derived for calculating the probability of an UPE random variable over an interval. A representation of the characteristic function (c.f.) for an UPE distribution is given. Based on the MPE distribution the probability density functions of the generalized non-central chi-square, the generalized non-central t, and the generalized non-central F distributions are derived.

  • PDF

Multivariate Time Series Simulation With Component Analysis (독립성분분석을 이용한 다변량 시계열 모의)

  • Lee, Tae-Sam;Salas, Jose D.;Karvanen, Juha;Noh, Jae-Kyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.694-698
    • /
    • 2008
  • In hydrology, it is a difficult task to deal with multivariate time series such as modeling streamflows of an entire complex river system. Normal distribution based model such as MARMA (Multivariate Autorgressive Moving average) has been a major approach for modeling the multivariate time series. There are some limitations for the normal based models. One of them might be the unfavorable data-transformation forcing that the data follow the normal distribution. Furthermore, the high dimension multivariate model requires the very large parameter matrix. As an alternative, one might be decomposing the multivariate data into independent components and modeling it individually. In 1985, Lins used Principal Component Analysis (PCA). The five scores, the decomposed data from the original data, were taken and were formulated individually. The one of the five scores were modeled with AR-2 while the others are modeled with AR-1 model. From the time series analysis using the scores of the five components, he noted "principal component time series might provide a relatively simple and meaningful alternative to conventional large MARMA models". This study is inspired from the researcher's quote to develop a multivariate simulation model. The multivariate simulation model is suggested here using Principal Component Analysis (PCA) and Independent Component Analysis (ICA). Three modeling step is applied for simulation. (1) PCA is used to decompose the correlated multivariate data into the uncorrelated data while ICA decomposes the data into independent components. Here, the autocorrelation structure of the decomposed data is still dominant, which is inherited from the data of the original domain. (2) Each component is resampled by block bootstrapping or K-nearest neighbor. (3) The resampled components bring back to original domain. From using the suggested approach one might expect that a) the simulated data are different with the historical data, b) no data transformation is required (in case of ICA), c) a complex system can be decomposed into independent component and modeled individually. The model with PCA and ICA are compared with the various statistics such as the basic statistics (mean, standard deviation, skewness, autocorrelation), and reservoir-related statistics, kernel density estimate.

  • PDF

On the Dependence Structure of Concornitants of Order Statistics

  • Song-Ho Kim;Tae-Sung Kim
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.2
    • /
    • pp.255-263
    • /
    • 1996
  • Let $(X_{1j}, X_{2j}, … , X_{nj}, Y_j/)$j = 1, 2, … , n, be a sample of size n on an (m + l)-dimensional vector $(X_1, X_2, … , X_m, Y)$, m .geq. 1. If $Y_{(r)}$ denote the rth order statistic from Y, then the $X_{[r:n]}$ paired with $Y_(r)$ is termed the concomitant vector of the order statistics. The general distributions of concomitant of order statistics will be found. The mean, variance and covariance of$X_{[r:n]}$ Will be studied. Then we will apply the results to the multivariate normal variate case.e.

  • PDF

Multi-sensor data-based anomaly detection and diagnosis of a pumped storage hydropower plant

  • Sojin Shin;Cheolgyu Hyun;Seongpil Cho;Phill-Seung Lee
    • Structural Engineering and Mechanics
    • /
    • v.88 no.6
    • /
    • pp.569-581
    • /
    • 2023
  • This paper introduces a system to detect and diagnose anomalies in pumped storage hydropower plants. We collect data from various types of sensors, including those monitoring temperature, vibration, and power. The data are classified according to the operation modes (pump and turbine operation modes) and normalized to remove the influence of the external environment. To detect anomalies and diagnose their types, we adopt a multivariate normal distribution analysis by learning the distribution of the normal data. The feasibility of the proposed system is evaluated using actual monitoring data of a pumped storage hydropower plant. The proposed system can be used to implement condition monitoring systems for other plants through modifications.

SEQUENTIAL ESTIMATION OF THE MEAN VECTOR WITH BETA-PROTECTION IN THE MULTIVARIATE DISTRIBUTION

  • Kim, Sung Lai;Song, Hae In;Kim, Min Soo;Jang, Yu Seon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.26 no.1
    • /
    • pp.29-36
    • /
    • 2013
  • In the treatment of the sequential beta-protection procedure, we define the reasonable stopping time and investigate that for the stopping time Wijsman's requirements, coverage probability and beta-protection conditions, are satisfied in the estimation for the mean vector ${\mu}$ by the sample from the multivariate normal distributed population with unknown mean vector ${\mu}$ and a positive definite variance-covariance matrix ${\Sigma}$.

On Computing a Cholesky Decomposition

  • Park, Jong-Tae
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.2
    • /
    • pp.37-42
    • /
    • 1996
  • Maximum likelihood estimation of Cholesky decomposition is considered under normality assumption. It is shown that maximum liklihood estimation gives a Cholesky decomposition of the sample covariance matrix. The joint distribution of the maximum likelihood estimators is derived. The ussual algorithm for a Cholesky decomposition is shown to be equivalent to a maximumlikelihood estimation of a Cholesky root when the underlying distribution is a multivariate normal one.

  • PDF

A statistical quality control for the dispersion matrix

  • Jo, Jinnam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.26 no.4
    • /
    • pp.1027-1034
    • /
    • 2015
  • A control chart is very useful in monitoring various production process. There are many situations in which the simultaneous control of two or more related quality variables is necessary. When the joint distribution of the process variables is multivariate normal, multivariate Shewhart control charts using the function of the maximum likelihood estimator for monitoring the dispersion matrix are considered for the simultaneous monitoring of the dispersion matrix. The performances of the multivariate Shewhart control charts based on the proposed control statistic are evaluated in term of average run length (ARL). The performance is investigated in three cases, where the variances, covariances, and variances and covariances are changed respectively. The numerical results show that the performances of the proposed multivariate Shewhart control charts are not better than the control charts using the trace of the covariance matrix in the Jeong and Cho (2012) in terms of the ARLs.

A Study on Process Capability Index using Loss Function Under the Muli-Attribute Conditions (다특성을 고려한 상황하에서의 공정능력지수에 관한 연구)

  • Kim Youn Hee;Kim Soo Youl;Park Myoung Kyu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2005.05a
    • /
    • pp.503-521
    • /
    • 2005
  • Process capability indices are widely used in industries and quality assurance system. When designing the parameter on the multiple quality characteristics, there has been a study for optimization of problems, but there has been few former study on the possible conflicting phenomena in considertion of the correlations among the characteristics. To solve the issue on the optimal design for muliple quality characteristics, the study propose the expected loss function with cross-product terms among the characteristics and derived range of the coefficients of terms. Therefore, the analysis have to be required a multivariate statistical technique. This paper introduces to multivariate capability indices and then selects a multivariate process capability index incorporated both the process variation and the process deviation from target among these indices under the multivariate normal distribution. We propose a new multivariate capability index $MC_{pm}^{++}$ using quality loss function instead of the process variation and this index is compared with the proposed indices when quality characteristics are independent and dependent of each other,

  • PDF

A Study on Multiple Characteristics Process Capability Index using Expected Loss Function (기대손실함수를 이용한 다특성치 공정능력지수에 관한 연구)

  • Kim Su Yeol;Jo Yong Uk;Park Myeong Gyu
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2004.11a
    • /
    • pp.69-79
    • /
    • 2004
  • Process capability indices are widely used in industries and quality assurance system. When designing the parameter on the multiple quality characteristics, there has been a study for optimization of problems, but there has been few former study on the possible conflicting phenomena in considertion of the correlations among the characteristics. To solve the issue on the optimal design for multiple quality characteristics, the study propose the expected loss function with cross-product terms among the characteristics and derived range of the coefficients of terms. Therefore, the analysis have to be required a multivariate statistical technique. This paper introduces to multivariate capability indices and then selects a multivariate process capability index incorporated both the process variation and the process deviation from target among these indices under the multivariate normal distribution. We propose a new multivariate capability index $MC_{pm}^{++}$ using quality loss function instead of the process variation and this index is compared with the proposed indices when quality characteristics are independent and dependent of each other.

  • PDF