• Title/Summary/Keyword: multivariate

Search Result 4,450, Processing Time 0.026 seconds

Multivariate EWMA Charts for Simultaneously Monitoring both Means and Variances

  • Cho, Gyo Young;Chang, Duk Joon
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.715-723
    • /
    • 1997
  • Multivariate control statistics to simultaneously monitor both means and variances for several quality variables under multivariate normal process are proposed. Performances of the proposed multivariate charts are evaluated in terms of average run length(ARL). Multivariate Shewhart chart is also proposed to compare the performances of multivariate exponentially weighted moving average(EWMA) charts. A numerical comparison shows that multivariate EWMA charts are more efficient than multivariate Shewhart chart for small and moderate shifts and multivariate EWMA scheme based on accumulate-combine approach is more efficient than corresponding multivariate EWMA chart based on combine-accumulate approach.

  • PDF

Multivariate Process Capability Index Using Inverted Normal Loss Function (역정규 손실함수를 이용한 다변량 공정능력지수)

  • Moon, Hye-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.2
    • /
    • pp.174-183
    • /
    • 2018
  • In the industrial fields, the process capability index has been using to evaluate the variation of quality in the process. The traditional process capability indices such as $C_p$, $C_{pk}$, $C_{pm}$ and $C^+_{pm}$ have been applied in the industrial fields. These traditional process capability indices are mainly applied in the univariate analysis. However, the main streams in the recent industry are the multivariate manufacturing process and the multiple quality characteristics are corrected each other. Therefore, the multivariate statistical method should be used in the process capability analysis. The multivariate process indices need to be enhanced with more useful information and extensive application in the recent industrial fields. Hence, the purpose of the study is to develop a more effective multivariate process index ($MC_{pI}$) using the multivariate inverted normal loss function. The multivariate inverted normal loss function has the flexibility for the any type of the symmetrical and asymmetrical loss functions as well as the economic information. Especially, the proposed modeling method for the multivariate inverted normal loss function (MINLF) and the expected loss from MINLF in this paper can be applied to the any type of the symmetrical and asymmetrical loss functions. And this modeling method can be easily expanded from a bivariate case to a multivariate case.

Characterization of Some Multivariate Distributions

  • Nair, N.Unnikrishnan
    • Journal of the Korean Statistical Society
    • /
    • v.18 no.1
    • /
    • pp.72-79
    • /
    • 1989
  • In this article the problem of characterizing multivariate distributions, possessing certain conditional distributions that have the same form as the parent model, are considered. It is shown that the forms of such conditional distributions characterize some well known distributions like the multivariate exponential, multivariate Burr, multivariate Lomax etc.

  • PDF

On The Generation of Multivariate Multinomial Random Numbers

  • Kim, Dae-Hak
    • Journal of the Korean Data and Information Science Society
    • /
    • v.7 no.1
    • /
    • pp.105-112
    • /
    • 1996
  • Softwares including random number generation are abundant in modern informative society. But it's hard to get directly multivariate multinomial random numbers from existing softwares. Multivariate multinomial random numbers are greatly used in social and medical sciences. In this paper, we show that desired multivariate multinomial random numbers can be easily generated by the aids of existing random number generating software. Some characteristics of multivariate multinomial distribution are surveyd. Measures of association for the generated random numbers were computed and compared with population ones via simulation study.

  • PDF

GENERALIZED SYMMETRICAL SIGMOID FUNCTION ACTIVATED NEURAL NETWORK MULTIVARIATE APPROXIMATION

  • ANASTASSIOU, GEORGE A.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.185-209
    • /
    • 2022
  • Here we exhibit multivariate quantitative approximations of Banach space valued continuous multivariate functions on a box or ℝN, N ∈ ℕ, by the multivariate normalized, quasi-interpolation, Kantorovich type and quadrature type neural network operators. We treat also the case of approximation by iterated operators of the last four types. These approximations are achieved by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order Fréchet derivatives. Our multivariate operators are defined by using a multidimensional density function induced by the generalized symmetrical sigmoid function. The approximations are point-wise and uniform. The related feed-forward neural network is with one hidden layer.

PARAMETRIZED GUDERMANNIAN FUNCTION RELIED BANACH SPACE VALUED NEURAL NETWORK MULTIVARIATE APPROXIMATIONS

  • GEORGE A. ANASTASSIOU
    • Journal of Applied and Pure Mathematics
    • /
    • v.5 no.1_2
    • /
    • pp.69-93
    • /
    • 2023
  • Here we give multivariate quantitative approximations of Banach space valued continuous multivariate functions on a box or ℝN, N ∈ ℕ, by the multivariate normalized, quasi-interpolation, Kantorovich type and quadrature type neural network operators. We treat also the case of approximation by iterated operators of the last four types. These approximations are derived by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order Fréchet derivatives. Our multivariate operators are defined by using a multidimensional density function induced by a parametrized Gudermannian sigmoid function. The approximations are pointwise and uniform. The related feed-forward neural network is with one hidden layer.

Comparison Analysis of Multivariate Process Capability Indices (다변량 공정능력지수들의 비교분석)

  • Moon, Hye-Jin;Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.106-114
    • /
    • 2019
  • Recently, the manufacturing process system in the industrial field has become more and more complex and has been influenced by many and various factors. Moreover, these factors have the dependent correlation rather than independent of each other. Therefore, the statistical analysis has been extended from the univariate method to the multivariate method. The process capability indices have been widely used as statistical tools to assess the manufacturing process performance. Especially, the multivariate process indices need to be enhanced with more useful information and extensive application in the recent industrial fields. The various multivariate process capability indices have been studying by many researchers in recent years. Hence, the purpose of the study is to compare the useful and various multivariate process capability indices through the simulation. Among them, we compare the useful models of several multivariate process capability indices such as $MC_{pm}$, $MC^+_{pm}$ and $MC_{pl}$. These multivariate process capability indices are incorporates both the process variation and the process deviation from target or consider the expected loss caused by the process deviation from target. Through the computational examples, we compare these process capability indices and discuss their usefulness and effectiveness.

A Multivariate Process Capability Index using Expected Loss (기대손실을 이용한 다변량 공정능력지수)

  • Chung, Young-Bae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.28 no.4
    • /
    • pp.116-123
    • /
    • 2005
  • The traditional process capability indices Cp, Cpk, Cpm, $Cpm^+$ have been used to characterize process performance on the basis of univariate quality characteristics. Cp, Cpk consider the process variation, Cpm considers both the process variation and the process deviation from target and Cpm+ considers economic loss for the process deviation from target. In manufacturing industry, there is growing interest in quantitative measures of process variation under multivariate duality characteristics. The multivariate process capability index incorporates both the process variation and the process deviation from target or considers expected loss caused by the process deviation from target. This paper proposes multivariate capability index based on the expected loss derived from multivariate normal distribution.

Multivariate CTE for copula distributions

  • Hong, Chong Sun;Kim, Jae Young
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.421-433
    • /
    • 2017
  • The CTE (conditional tail expectation) is a useful risk management measure for a diversified investment portfolio that can be generally estimated by using a transformed univariate distribution. Hong et al. (2016) proposed a multivariate CTE based on multivariate quantile vectors, and explored its characteristics for multivariate normal distributions. Since most real financial data is not distributed symmetrically, it is problematic to apply the CTE to normal distributions. In order to obtain a multivariate CTE for various kinds of joint distributions, distribution fitting methods using copula functions are proposed in this work. Among the many copula functions, the Clayton, Frank, and Gumbel functions are considered, and the multivariate CTEs are obtained by using their generator functions and parameters. These CTEs are compared with CTEs obtained using other distribution functions. The characteristics of the multivariate CTEs are discussed, as are the properties of the distribution functions and their corresponding accuracy. Finally, conclusions are derived and presented with illustrative examples.

A Study on Multivriate Process Capability Index using Quality Loss Function (손실함수를 이용한 다변량 공정능력지수에 관한 연구)

  • 문혜진;정영배
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.25 no.2
    • /
    • pp.1-10
    • /
    • 2002
  • Process capability indices are widely used in industries and quality assurance system. In past years, process capability analysis have been used to characterize process performance on the basis of univariate quality characteristics. However, in actual manufacturing industrial, statistical process control (SPC) often entails characterizing or assessing processes or products based on more than one engineering specification or quality characteristic. Therefore, the analysis have to be required a multivariate statistical technique. This paper introduces to multivariate capability indices and then selects a multivariate process capability index incorporated both the process variation and the process deviation from target among these indices under the multivariate normal distribution. We propose a new multivariate capability index $MC_{pm}^+$ using quality loss function instead of the process variation and this index is compared with the proposed indices when quality characteristics are independent and dependent of each other.