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GENERALIZED SYMMETRICAL SIGMOID FUNCTION
ACTIVATED NEURAL NETWORK MULTIVARIATE
APPROXIMATION

GEORGE A. ANASTASSIOU

ABSTRACT. Here we exhibit multivariate quantitative approximations of
Banach space valued continuous multivariate functions on a box or RYV,
N € N, by the multivariate normalized, quasi-interpolation, Kantorovich
type and quadrature type neural network operators. We treat also the case
of approximation by iterated operators of the last four types. These ap-
proximations are achieved by establishing multidimensional Jackson type
inequalities involving the multivariate modulus of continuity of the engaged
function or its high order Fréchet derivatives. Our multivariate operators
are defined by using a multidimensional density function induced by the
generalized symmetrical sigmoid function. The approximations are point-
wise and uniform. The related feed-forward neural network is with one
hidden layer.
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1. Introduction

G.A. Anastassiou in [2] and [3], see chapters 2-5, was the first to establish
neural network approximations to continuous functions with rates by very specif-
ically defined neural network operators of Cardaliaguet-Euvrard and ”Squash-
ing” types, by employing the modulus of continuity of the engaged function or
its high order derivative, and producing very tight Jackson type inequalities. He
treats there both the univariate and multivariate cases. The defining these op-
erators "bell-shaped” and ”squashing” functions are assumed to be of compact
support. Also in [3] he gives the Nth order asymptotic expansion for the error of
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weak approximation of these two operators to a special natural class of smooth
functions, see chapters 4-5 there.

Motivations for this work are the article [18] of Z. Chen and F. Cao, and
(4]-[16], [19], [20].

Here we perform multivariate generalized symmetrical sigmoid function based
neural network approximations to continuous functions over boxes or over the
whole RV, N € N, and also iterated approximations. All convergences here are
with rates expressed via the multivariate modulus of continuity of the involved
function or its high order Fréchet derivative and given by very tight multidimen-
sional Jackson type inequalities.

We come up with the "right” precisely defined multivariate normalized, quasi-
interpolation neural network operators related to boxes or RV, as well as Kan-
torovich type and quadrature type related operators on RY. Our boxes are not
necessarily symmetric to the origin. In preparation to prove our results we es-
tablish important properties of the basic multivariate density function induced
by generalized symmetrical sigmoid function and defining our operators.

Feed-forward neural networks (FNNs) with one hidden layer, the only type
of networks we deal with in this article, are mathematically expressed as

Nn(x):cha(<aj~x>+bj)7 reR® seN,
§=0

where for 0 < j < n, b; € R are the thresholds, a; € R® are the connection
weights, ¢; € R are the coefficients, (a; - ) is the inner product of a; and z,
and o is the activation function of the network. In many fundamental network
models, the activation function is the generalized symmetrical sigmoid function.
About neural networks see [22], [23], [24].

2. Auxiliary Results (see also [14])
Here we consider the generalized symmetrical sigmoid function ([21])

file)=—"——, p>0,z€R (1)

T
(1 +Jz[")*

This has applications in immunology and protection from disease together with
probability theory. It is also called a symmetrical protection curve.

The parameter p is a shape parameter controling how fast the curve ap-
proaches the asymptotes for a given slope at the inflection point. When p =1
f1 is the absolute sigmoid function, and when p = 2, f; is the square root
sigmoid function. When p = 1.5 the function approximates the arctangent func-
tion, when pu = 2.9 it approximates the logistic function, and when p = 3.4
it approximates the error function. Parameter y is estimated in the likelihood
maximization ([21]). For more see [21].
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Next we study the particular generator sigmoid function

folz) = %, A is an odd number, z € R. (2)

(1+12)"
We have that f5 (0) =0, and
fa(=x) = —fa (), 3)

so fy is symmetric with respect to zero.
When z > 0, we get that ([14])

f(w) = ——

EES
(1+z*) >
that is fs is strictly increasing on [0, +00) and f5 is strictly increasing on (—oo, 0].
Hence fs is strictly increasing on R.

We also have fa (+00) = fo(—o00) = 1.
Let us consider the activation function ([14]):

x@)= U@+ 1)~ fole—1)] =

>0, (4)

1 (x+41) 3 (x—1) 5)
! (1+le+1M) (1l -1)"
Clearly it holds ([14])
x(z) =x(-z), Vzek (6)
and
1

x (0) (7)

2/2°
and x (z) >0,V zeR.

Following [14], we have that y is strictly decreasing over [0,+o0), and x
is strictly increasing on (—o0,0], by x-symmetry with respect to y-axis, and
x' (0) =0.

Clearly it is

therefore the z-axis is the horizontal asymptote of x ().
The value
x (0) = . A is an odd number, (9)

23/2’

is the maximum of y, which is a bell shaped function.

We need
Theorem 2.1. ([14]) It holds
> x(@—i)=1, VxR, (10)

i=—00
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Theorem 2.2. ([14]) We have that

/00 X (z)dx = 1. (11)
So that x (x) is a density function on R.
We need
Theorem 2.3. ([14]) Let 0 < a < 1, and n € N with n'=% > 2. It holds
3 X —j) < = (12)
2X (nt—o —2)

j=-0
:nw — j| > ntme
where A € N is an odd number.

Denote by |-] the integral part of the number and by [-] the ceiling of the
number.
We also need

Theorem 2.4. ([14]) Let [a,b] C R and n € N so that [na] < |nb|. Then

1
<23/1+ 2>, (13)

[nb]
> x(|nx — k)
k=[na]

where X\ is an odd number, ¥ = € [a,b].
We make

Remark 2.1. ([14]) (1) We have that

Lnb]
nhﬁn;o Z X (nx — k) # 1, for at least some x € [a,b]. (14)
k=[na]
(2) Let [a,b] C R. For large enough n we always obtain [na] < |nb]. Also
agggb,iﬁ [na] < k < |nb].
In general it holds that

Lnb)
> xz—k) <L (15)
k=[na]
We introduce
N
Z (21, .. ,xn) = Z (x) := Hx(mi) , = (x1,..,2n) ERY, NeN. (16)
i=1

It has the properties:
(i) Z(x) >0, V2 RV,
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(if)

oo oo (o] [ee]
Yo Z@—k)y= > > o Y Z(wi—ky,.oay —ky) =1,
k=—oc0 klz—t)o kg:—oo kN:—oo
where k := (k1,...,k,) € ZN,V z € RV,
hence

(iii) .
Z Z(nx—k) =1,

k=—o00

VzeRV;neN,
and

(iv)
/]RN Z(z)dx =1,

that is Z is a multivariate density function.

Here denote ||z := max{|z1],...,|zn|}, z € RV, also set 0o := (o0, ...

—00 := (—00, ..., —00) upon the multivariate context, and

[na] := ([na1],..., [nanT),

|nb| := (|nb1],..., [nbn]),

where a := (ay,...,an), b:= (b1,...,bn) .
We obviously see that

[nb] [nb] N
Z Z (nx — k) = Z (HX(”% kl)> =

k=[na k=[na] \i=1

[nb1 ] [nbn ] N N [nbi]
o> (Hx(nﬂci - k¢)> =11 D xmai—k)

ki1=[na1] kn=[nan] \i=1 i=1 \k;=[na;]

For 0 < B <1andn €N, a fixed z € RY, we have that

Lnd]
Z Z (nx —k) =
k=[na]
[nb] [nb]
Z Z (nx — k) + Z Z (nx — k).
k = [na] k= [na]
15 - 2lle < 55 15 - 2lle > 55

189

(17)

(18)

(22)

In the last two sums the counting is over disjoint vector sets of k’s, because the

1

condition H% — a:”oo > -~ implies that there exists at least one ’% — a:ry > n—lg,

where r € {1,...,N}.



190 George A. Anastassiou

(v) As in [10], pp. 379-380, we derive that
o] (12) 1 ,
> Z(nx—k) < ————, 0< B <1, \is odd,

1-8 _ o9\’
{ k= [na 2 (n 2)
1% = 2l > 75

withn € N:n'=F >2 =z ¢ Hf\il [ai, b;] .
(vi) By Theorem 2.4 we get that

N
0< = ! <(2¢/1+2A) : (24)
Zk:n [na] (nx - k)
Vae (HZ 1[al,b]), n € N, A is odd.

It is also clear that

(vii)

(23)

. 1
{ 12 ==l >

0<B<l,neN:n'"#>2 2ecRN, \is odd.
Furthermore it holds

[nb]
nh_)rréo kz[: ] Z(nx—k)#1, (26)

for at least some z € (Hf\il [ai, bl]) .
Here (X, |H|7> is a Banach space.
Let f € C(H1N=1 [ai,bi],X>, x = (T1,...,TN) € Hivzl [a;,b;], n € N such

that [na;] < |nb;],i=1,...,N.
We introduce and define the following multivariate linear normalized neural

network operator (x := (z1,...,xN) € (Hf\il [ai,bi])):

S ar /() Z (2 — k)
A'n (f7.’1717-.-,$N) = An (f,{L') = r\jlb] -
Zk [na] (mc - k)
nby nbo nby N N
S S ST () (T X (s — B))

nb;
Hi:l ( IE —Hna 1 X (nx" kl))
For large enough n € N we always obtain [na;| < |nb;], i = 1,...,N. Also

(27)
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When g € C (Hl 1 lag, bl]> we define the companion operator

~ Z "bjm g Z (nx — k)
2k (na] (nx —k)
Clearly ﬁn is a positive linear operator. We have that

A,(L,z)=1, Ve (H [ai,bi]> .

i=1

Notice that A, (f) € C (HZ las, bi) 7X) and A, (¢) € C (Hz lai, by ])
Furthermore it holds

\."bjna f 7 (nhx —k
14, (f,2)]|, < Sitna I GO, 2 (€ )

S e W)@

Ve [T, [aibi].
N
Clearly |7]., € € (T, las. b))

So, we have that

14n (£,2) ], < Au (I1f1,2) - (30)
¥z e [TV, [ai, b, V n €N, erc( 1Y, [as, bi] )
Let ce X and ge C (Hl 1 lag, b ) then cg € C (Hf\;l [a;, b;] ,X) .
Furthermore it holds
A, (cg,z) = cA, , Vae H a;,b (31)
Since A, (1) = 1, we get that
Ap(c)=¢, YceX. (32)

We call gn the companion operator of A
For convinience we call

[nb]

AX (f,x) : Zf() (nz — k)

[na]

k1 kn N
) D N ( . ) (Hx(nxi - ki)> , (33)
ki=[nai] ka=[nasz] i=1

kn=[nan]
Vaze (Hf\il [aiabi]) :
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That is
AL (f,x)
Aﬂ (f7 (E) = n 9 (34)
ZIE: ana] (nx - k)

Vae (Hf\il [ai,bi]>7 n € N.
Hence

A; (fix) = £ @) (S0 Z (nz = 1)

A (fz) = f () = — (35)
Z,E meﬂ (nz — k)
Consequently we derive
@4) , | N Lnb]
[An (f.2) = f (@), < (2 1 +2A) A (fa)—f(2) Y Z(na—E)||
k=[na]
(36)

vae (I o bi])

We will estimate the right hand side of (36).

For the last and others we need
Definition 2.5. ([11], p. 274) Let M be a convex and compact subset of
(RN, H-||p), p € [1,00], and (X, H||,y) be a Banach space. Let f € C'(M,X).
We define the first modulus of continuity of f as

wi (f,0) = sup If (@) = fWll,, 0<é<diam(M).  (37)
x,y e M:
|z —yll, <6

If 6 > diam (M), then
w1 (f,0) = w1 (f,diam (M)). (38)
Notice wy (f,0) is increasing in 6 > 0. For f € Cp (M, X) (continuous and
bounded functions) w; (f,0) is defined similarly.
Lemma 2.6. ([11], p. 274) We have w1 (f,6) = 0asd ] 0, iff f € C(M,X),

where M is a conver compact subset of (RN, ||-||p), pE€[l,x].

Clearly we have also: f € Cy (RN , X ) (uniformly continuous functions),
iff w1 (f,0) — 0 as 6 | 0, where w; is defined similarly to (37). The space
Cg (RN , X ) denotes the continuous and bounded functions on RY.

When f € Cp (]RN,X) we define,

By (fo2) = By (foans i) = 3 f(i)Z(nxk) —

k=—o00
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> 3y (L) (e w). @

k1=—00 kg=—00 kny=—o00
neN,VazeRY, N eN, the multivariate quasi-interpolation neural network

operator.
Also for f € Cp (RN , X ) we define the multivariate Kantorovich type neural

network operator

Cpn(f,x) =Cy(f,21,....,TN) := Z <nN/ f@) dt) Z (nx —k) =

k=—o00

k1+1 ko+1 ky+1

i i i ( / /k /LN f(tl,...,tN)dtl...dtN>

k1=—00 ko=—00 kn=—o0 n

N
: <Hx(n:m - kz)) , (40)

neN, VaeRN.

Again for f € Cp (]RN , X ) , N € N, we define the multivariate neural network
operator of quadrature type D, (f,z), n € N, as follows.

Let 6 = (04,...,0N) € NN, r=(ry,...rn) € Zf, Wy = Wy, py.ry = 0, such

0 01 02
that Y w,= > > .. Z Wy gy = 13 k € ZN and
r=0 r1=07r2=0 rny=0

57’L1€ (f) _6” k‘l,k‘z, , wa‘f( )
0, 6,
k’1 7’1 ky o kn N
Z Z Z Wry ,rs,.. er( o + w0y + m@N) , o (41)

r1=07r2=0 rx=0
. (11 T2 N
where 7 := (01’0 sy )
We set

Dy (f,7) = Dy (f 21, on) = Y O (f) Z (nx — k) = (42)

k=—o0

0o oo oo N
Z Z Z O,k ka,ebon () (Hx(nxz - kz)) )
ki=—oc0o ko=—00 kn=—00 i=1
VzeRY.
In this article we study the approximation properties of A, B, Cy,, D,, neu-
ral network operators and as well of their iterates. That is, the quantitative
pointwise and uniform convergence of these operators to the unit operator I.
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3. Multivariate general Neural Network Approximations

Here we present several vectorial neural network approximations to Banach
space valued functions given with rates.

We give
Theorem 3.1. Let f € C (vazl [a;, b;] ,X) ,0<pB<1,x€ (Hivzl [ai,bi]) ;A
is odd, N,n € N with n'=# > 2. Then

1)
) s |
||An(f,x)—f(x)||,y§<2 1+2> w1< nﬂ)—’—)\(nlfB—Q)
(43)
and
2)
[0 () =11, =2 (44)
We notice that ILm A, (f) = I3, " f, pointwise and uniformly.
Above wy is with respect to p = oo.
Proof. We observe that
[nb]
A(z) = A (f,x) x) Y Z(nz—k)=
k=[na]
[nb] i Lnb]
Z f(n) (nz —k Z fx)Z(nz—k)=
k=[na] k=[na]
[nb] k
> (1 (n) -1 @) Z(na - 1. (15)
k=[na]
Thus
[nb] i
2@l s 3 |r(2) @] zee-n-
k=[na] v
[nb] k
> () -r@| 2o+

15 -2l < 75
Lnb)
> r(§)-r@| zee-n's
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nb)
1 (23)
w1 (f’n/3> Moo Z Z(nx—k) <
k= fna
15 -2l > 75
[
,— 0 VWeo | 46
o (135) + s (46)
So that
sz o) 0, .
INCIREPA v (47)
Now using (36) we finish the proof. O
We make

Remark 3.1. ([11], pp. 263-266) Let (]RN Il ) N € N; where [|-[|,, is the L-

norm, 1 < p < co. RY is a Banach space, and (RN ) denotes the j-fold product
space RY x... xRN endowed with the max-norm 2]l (gavys == max [[2xl],, where
1<A<; p

z:=(x1,...,2) € (RN)j .
Let (X, ””'y) be a general Banach space. Then the space L; := L; ((RN)J ;X)

of all j-multilinear continuous maps g : (RN)j — X, j=1,...,m, is a Banach
space with norm

lg @)l

_ 48
Y R

lgll == llglly, == sup [lg(@)]l, = sup

HTfH(RN)j =1

Let M be a non-empty convex and compact subset of RV and zy € M is
fixed.

Let O be an open subset of RN : M C O. Let f: O — X be a continuous
function, whose Fréchet derivatives (see [25]) fU) : O — L; = L; ((RN)J ;X)
exist and are continuous for 1 < j <m, m € N._

Call (v — z9)’ := (z — 20, ..., — 20) € (RN), 2 € M.

We will work with f|as.

Then, by Taylor’s formula ([17]), ([25], p. 124), we get

Uil f(j) (z0) (z — xo)j
) = Z ! + Ry (z,20), all z € M, (49)
where the remainder is the Riemann integral

1 —u m—1
Ry, (z,70) == /0 (1(m—)1)' (f(m) (xo +u(x —x0)) — fom) (:ro)) (x — 20)" du,
(50)
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here we set f(© (z0) (z — 20)" = f (z0) .
We consider

w = wq (f(m), h) = sup Hf(m) () — ™ @), (51)
z,yeM:
lz—yll, <h
h > 0.
We obtain
| (£ (@o+u (@ —20)) = £ (20)) (& = 20)"|| <
y
£ (o + (@ = w0)) = £ (o) |- 2 = o} <
m [z — ol
wile = aolly [, (52)
by Lemma 7.1.1, [1], p. 208, where [-] is the ceiling.
Therefore for all x € M (see [1], pp. 121-122):
Lrulle = 2oll,] (1 —w)™ "
< — x| P
IR 0, < = aally [ [ | Eo
=y, (|l = o]l (53)
by a change of variable, where
It - g (1t — S)mfl 1 ) .
©m“);ié {E]—G;jﬁrds:;ﬁ E;QH—]M+ ,VteR, (54)

is a (polynomial) spline function, see [1], p. 210-211.
Also from there we get

P, (1) < 7|t|m+1 |t‘m 7h‘t|m_l VteR 55
mO S\ G m T am Tsmmo1y ) VIER (55)

with equality true only at ¢t = 0.
Therefore it holds

|1 R, (z,20)|., < w Hx_%”;Hl ||x—3:0\|;” th_xO”;nil VeeM
AT 0y = (m+1)'h 2m! 8(m—1) |’
(56)
We have found that
S f9 (o) (2 — o)’
HOEDY i <
j=0 ~
m—+1 m m—1
- - bz — ol
(m) h Hl’ .’L'()”p ||"If 'CL.OHp p
w1 (f ’ )( i Om T o T smon )< 60

Vx,xg € M.
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Here 0 < wy (f™,h) < 0o, by M being compact and f{™ being continuous
on M.
One can rewrite (57) as follows:

™) (o) (- — 20V
f<'>—Zf (O)jf o ||

j=0

:
m+1 m m—1
- —mollp Rl ol
m |- = oll,, |- = zoll,, » v AL (58
wl(f )( T Ol T aml T smonr ) Vo€ M (58)

a pointwise functional inequality on M .

Here (- — x¢)’ maps M into (RN)] and it is continuous, also fU) (zq) maps
(]RN)J into X and it is continuous. Hence their composition f@) (zo) (- — z)’
is continuous from M into X.

Clearlyf ()*Zm M c C(MaX)a hence Hf () _ Zm W

§=0 il §=0
e C(M).
Let {E N}NGN be a sequence of positive linear operators mapping C (M) into
C(M).

Therefore we obtain

| PO SV ACO I R R P

=0 J' ,
T, C— x| x L C—xo||™ z
o (70 (Zx (1 (m+o||lp)!h )) (@) . (Zn (I %;np )) @)
(I (||8-(—ma:i||i;'“;!‘ )) (@o) | )

VNeN,Vxye M.

N ~ ~
Clearly (59) is valid when M = [] [a;, b;] and L,, = A, see (28).
i=1
All the above is preparation for the following theorem, where we assume
Fréchet differentiability of functions.
This will be a direct application of Theorem 10.2, [11], pp. 268-270. The
operators A,, A, fulfill its assumptions, see (27), (28), (30), (31) and (32).
We present the following high order approximation results.
N
Theorem 3.2. Let O open subset of (RN, ||||p) ,p € [1,00], such that ] [a;, b;] C
i=1
O C RY, and let (X7 ||H7) be a general Banach space. Let m € N and f €

C™(0,X), the space of m-times continuously Fréchet differentiable functions

~
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N
from O into X. We study the approxzimation of f| . Letxp € (H [a;, bl]>
[@i;bs] i=1

andr > 0. Then

1)

1 r omr?
{< T2 } | (60)
2) additionally if Ji (v9) =0, j = 1,...,m, we have
[(Ar (f)) (o) — f (o)l <

wn (7 (G (1 = 20l7)) @) ™7 L
( (( ( — )) ) ) ((Zn (H 0||m+1)) (xo))(mﬂ)

(61)
1 romr?
{(m—i—l) +§+ 8 }
3)
(s (1) (@)~ £ (o) i;H( (49 20) (= a0 ) o)
wy (M I = 2ol (x0) o
1( (( ( _ )) ) ) ((;{n (I\-—$o||;"+1)) (x0)>(m+1)
(62)
1 r o mr?
hm+D+2+é3}
and
4)
SEL P

[b]

(4n (1 ﬂ><xo><~—xo>')) o)
P ([ (A (1 = 2ol ) ) o)

rm/!

+

1
Zj

|

N
Tlloo,@o€ [T [ai,bi]
i=1

1
P
N
00,20€ [] [ai,b;]
i=1




Generalized symmetrical sigmoid function activated neural network 199

(72+)

A =t o .
L T
1 n r n mr?
m+1) 28 |
We need
Lemma 3.3. The function (Zn (H - 370||;;n)) (x0) is continuous in xo €
N
<H [ai,b,’]), m € N.
i=1
Proof. By Lemma 10.3, [11], p. 272. O
We give

Corollary 3.4. (to Theorem 3.2, case of m =1) Then
1)

(A (D) (o) = 7 @)l < || (4n (/O 20) ¢ = 20)) ) o)+
o (100 (A (1= aal2)) o)) (A (1= 0l2)) ) (60
[1 +r+ 7:] )

and

2)

e =]l xS

HH FO (20) (- = 20)) ) (w0) i -
00,&?06‘_ a;,b;

2%}«& (f(l)ﬂ" (Zn (H o 500”127)) (o)
[ (A (1 = %02) ) o)

+

1
2
N
00,x0€ [] [a:,bi]
=1

[14—7“-1—22], (65)

1
2

N
00,z0€ [] [ai,bs]
=1

r > 0.
We make

Remark 3.2. We estimate 0 < a <1, m,n € N: nl’o‘ > 2

lnt)
~ na o Z (nzo — k) (21
o (11 = woll ™) (o) = Tzt | = 2ol <

nb
St Z (nao — k)
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N bl
(2 V1+ 2A) 3

k=[na]

m-+1

— —xp
n

‘ k

o0

[nb]

(i)’ D
Lot n

[nb]

S

{ k= [na) >
ke 1
Hw = wolly > s
N 1 b —af 2t
23/1 2f\> o0 , 67
( * {na(mﬂ) + 2\ (nl—o — 2)/\ (67)

(where b —a = (by — a1, ...,by —an)).
N
We have proved that (V o € [] [as,b:])

1=

gn(wxo||?o“)<zo><(zm)N{ ot b“‘”yl)x}:mm

1

ne(m+l) =gy (pl-e —2
(68)
0<a<1l,mmneN:nl=*>2).
And, consequently it holds

|40 (1= wollZ) o)

N 1 bh— m+1
<2>\ 1+2)\> { + ” a‘”oo

ne(m+1) = oy (nl—e — 2)/\} =¢1(n) =0, asn — +oc.

N <
00,20 € [ [a:,bi]
i=1

i=

(69)
So, we have that ¢q (n) — 0, as n — +oo. Thus, when p € [1,00], from
Theorem 3.2 we have the convergence to zero in the right hand sides of parts

(1), (2).

Next we estimate H (Zln (f(j) (20) (- — zo)j)> (xO)H .
We have that !

o | S £9) (w0) (& — 0)’ Z (narg — k)
() T - J i = [ne] '
(An (f (o) (- — o) )) (o) Zz&ibrjnﬂ Z (nxo — k)
(70)
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When p = o0, j = 1,...,m, we obtain

79 Gao) (£ - ) | <
v

We further have that

H (Zn (f(j) (zo) (- = wo)j)) Zo H (24)

J

9 e

k
= 2
n o0

(21 1+2A)N( Lf:] 9 () <S—x0)j Z (no — k)) <
k=[na] ¥
241+ 2> " % 19 (20) E—xo (nxg — k) (72)
k=[na] "
(2\/1+2/\) Hfm (zo H ( S S—mo ’ Z(mco—k)> =
k=[na] oo
pE—. Lnb) . j
eV el X [fen] zem
T
v 5 5]z €

{ k = [na] >

: n e} ne
b—al’
£ (o) H —i——H alloc v ¢ — 0,asn — oo.
ned " g) (nl=o>—2)

|(Aa (79 o) —m)j))wo)Hﬁo,asHoo.

Therefore when p = oo, for j = 1,...,m, we have proved:

(5. (2 - o)) o],
O T e ER

N 1 b — all?
24/1+2> — S = py;
( + ) N {nO‘J + A (a2 P2 (n) < oo,

(2 N4 2A)

That is

f(j)
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and converges to zero, as n — co.

We conclude:

In Theorem 3.2, the right hand sides of (62) and (63) converge to zero as
n — oo, for any p € [1, co].

Also in Corollary 3.4, the right hand sides of (64) and (65) converge to zero
as n — oo, for any p € [1,00].

Conclusion 3.1. We have proved that the left hand sides of (60), (61), (62),
(63) and (64), (65) converge to zero as n — oo, for p € [1,00]. Consequently
A,, — I (unit operator) pointwise and uniformly, as n — oo, where p € [1, c0].
In the presence of initial conditions we achieve a higher speed of convergence,
see (61). Higher speed of convergence happens also to the left hand side of (60).

We further give

Corollary 3.5. (to Theorem 3.2) Let O open subset of (RN, ||-|l..), such that

N
H [a;,b;] C O C RN, and let <X [I-Il ) be a general Banach space. Let m € N

cmd f e C™(0,X), the space of m—times continuously Fréchet differentiable
functions from O into X. We study the approximation of f| n . Let ¢ €

Ai,04

N i=1
<H [ai,bi]) and r > 0. Here 1 (n) as in (69) and @25 (n) as in (74), where

i=1
neEN:nl"™*>2 0<a<l,j=1,..,m. Then

1)

(An V;l( (£9) (o) (- = w0)’) ) (wo)| <
w1 (m),r 1(n T . r omr2
s r:;()) >(9"1(””(m“)[<m1+1>+2 NG

2) additionally, if f9) (z9) =0, j =1,...,m, we have
(A (D) (w0) - £ @), <

wi (£, (o1 () ™50

rm!

N——
—~
S
=
—

S
~—
~—

3
T
AR
~—
—
—~
—_
<
3
no
1
—~

EN|

D
=

3)
< zm: P2 (n)

Jj=1

HHAn (f) - f”’yHOC 11_v[ lai,b;i]

wr (0,7 (1 () 757 )

rm/!
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! —i—f—l—m—rQ =:p3(n) =0, asn = o0
m+1) 2" 8 | 7 ’ '
We continue with
Theorem 3.6. Let f € Cp (RN,X), 0<pB<1,ze€RN Xisodd N,necN

with n'=P > 2, wy is for p=oo. Then

1
1B (f.) = £ @, <n (fi7) + M =), (1)

g
[1B2 () = 111, _ <22 (). (79)

Given that f € (C’U (RN,X) NCg (RN,X)), we obtain lim B, (f) = f, uni-
n— oo

formly.

Proof. We have that

Bu(fa)~ fla) kio 1(3) 200 s éw Znw—k) = (0
k_fjoo <f (fj) —f <:c>) Z(nz— k).
Hence
.00 - 1@l < 3 [1(3) 1@ 2=
3 i fj)f@c) Z (s — k) +
Lo s . 7
> (5o 2w
Ui 0%
a(rm) ez, Y zee-n'
Lo
w ( nlﬁ) + A(‘ﬂfﬂ S (81)

proving the claim. O
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We give

Theorem 3.7. Let f € Cp (RN,X), 0<B<1l,zeRN XNisodd, Nyn e N
with n'=P > 2, wy is for p=oco. Then

1)
1Cn (£,2) = f @), < i (f, — nlﬁ) + M = a(n),  (82)

J
licn =11, <2a ). (83)

Given that f € (CU (RN,X) NCg (RN,X)) , we obtain lim Cy, (f) = f, uni-
n—oo

formly.

Proof. We notice that

k+1 k1+1 ko1 En+l

/" Ft)dt = /kl ! /kz /w Ft1,to, s tn) dtrdto..dty =

1

// / (t1+t2+k2 tN+m)dm...dm:/”f(Hi)dt.
0

(84)
Thus it holds (by (40))

Cn(f,z)= i (nN/U”l‘f(HfL) dt)Z(nxk). (85)

‘We observe that

k=—o0
i < (86)
k=—o00 ~

{ —
15 -2l <5



Generalized symmetrical sigmoid function activated neural network 205

f(t+fj)—f<x>

e’} 1
> (o
{ k= —o0 0
[k N
Z (nN/ w1 <f,||t||oo+an‘ )dt)Z(n:L'k)+
0 00

k=—00
1% =2l <=

dt) Z (nx —k) <

21 > )| <
k= —o00
15—l > 75
Lo 1AL
,— JE— 700, 87
w1 (fn+n5)+)\(n162))‘ (87)
proving the claim. O

We also present

Theorem 3.8. Let f € Cp (RN,X), 0<B<1l,zeRN Xisodd, NyneN
with n' =P > 2, wy is for p = oco. Then

1
1D () = £ @)l < (£ 3) + M “Xsm). (89

2
120 (5) = 111, _ <20 (). (89)

Given that [ € (CU (RN,X) NCg (RN,X)), we obtain lim D, (f) = f,
n—oo

uniformly.

Proof. Similar to the proof of Theorem 3.7, as such is omitted. O
We make

Definition 3.9. Let f € Cp (RY,X), N € N, where (X, ||||7) is a Banach

space. We define the general neural network operator

Fo(fix)i= Y b (f)Z(nx—k) =

k=—o00
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By, (f,x), if b (f) = ()
amﬁ@,ﬁmk)—nNﬁnf<) (90)
D, (f,x), if lyg (f) = 6nk (f).

Clearly l,,5, (f) is an X-valued bounded linear functional such that ||l (f)]., <

Y
(EM

Hence F,, (f) is a bounded linear operator with HHF" (f)HvH < H”f”’YH
We need > >

Theorem 3.10. Let f € Cp (RN,X), N > 1. Then F, (f) € Cp (RN,X).

Proof. Lengthy and similar to the proof of Theorem 21 of [15], as such is omitted.
O

Remark 3.3. By (27) it is obvious that HHAn (f)H,YH < H||fH7H < o0, and

2

A, (f)eC (H [a;, l],X), given that f € C (H [a;, b;] ,X)
=1
Call L,, any of the operators A,,, By, Cy, D,.

Clearly then

Iz @] = 12a a1, < 122 1| < REH
etc.
Therefore we get
lzs o, < et vren (92)
the contraction property.
Also we see that
lzs ol | < e L << iz o < i, o)

Here L% are bounded linear operators.
Notation 3.11. Here N € N, 0 < 8 < 1. Denote by

N

Py by : —

i 4 (VTER) i L, = A, (94)
1, lf Ln - Bna Orana

1 .
L vl if Ln == An7 Bn’
@(n) o { % + 7%37 if L, = Cn>Dn’ (95)
N .
0. C(H [ai,bi],X) s lan:A'rw (96)

=1
CB (RNaX) ) if Ln = BTL?C’VUDTH
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and
[a’iabi} ’ lf LTL = A’I’L7
, if L, = By, Chp, Dy,.

N
yi={ 1 (97)
RN

We give the condensed

Theorem 3.12. Let f € Q, 0< B <1, z€Y;n, NeNwithn'=# >2 \is
odd. Then

()

71,
Ly (f,z)— < ) + —> ) 98
[Ln (f,2) = f (@)l < en |wi (f,9(n)) ooy | T n),  (98)
where wy is for p = oo,
and
(ii)
HHLn (f)—f||WH <7(n) =0, as n — oco. (99)
For f uniformly continuous and in  we obtain
lim L, (f) = .
pointwise and uniformly.
Proof. By Theorems 3.1, 3.6, 3.7, 3.8. O

Next we talk about iterated neural network approximation (see also [9]).
We give

Theorem 3.13. All here as in Theorem 3.12 and r € N, 7(n) as in (98). Then
lizns =11 <vrm). (100)

So that the speed of convergence to the unit operator of L) is not worse than of
L,.

Proof. As similar to [15] is omitted. O
We also present

Theorem 3.14. Let f € Q; X is odd, N, mi,ma,....m, € N: m; < my <
e <my, 0< B <1 mg_ﬁ >2,4i=1,..,7, x €Y, and let (Ly,,..., Lm,) as
(Amys oy Am,) 07 (Bmyy ooy Bm,.) 07 (Cinyy ooty Cin) 07 (Dinyy ooy D), p = 00.
Then

HLmr (Lmr_1 (+ Loy (Lmlf))) (r) — f(z)H <

HHLmT (Lmr—l ('~'Lm2 (Lmlf))) - f”v

.
) (2N =
i=1 o

o0
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: 171,
CN; w1 (f#P(mi))‘Fm
|
ren |wi (f, 0 (ma)) + m : (101)

Clearly, we notice that the speed of convergence to the unit operator of the multiply
iterated operator is not worse than the speed of Ly, .

Proof. As similar to [15] is omitted. O
We also give

Theorem 3.15. Let all as in Corollary 3.5, and r € N. Here 3 (n) is as in
(77). Then

lazs = || < v l|idns = 1| < res . (102)
(o) o0
Proof. As similar to [15] is omitted. O

Application 3.16. A typical application of all of our results is when (X, II ||7) =

(C,|]), where C are the complex numbers.
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