• Title/Summary/Keyword: multiuser systems

Search Result 205, Processing Time 0.021 seconds

Two-step Scheduling With Reduced Feedback Overhead in Multiuser Relay Systems (다중 사용자 릴레이 시스템에서 감소된 피드백 정보를 이용한 두 단계 스케줄링 기법)

  • Jang, Yong-Up;Shin, Won-Yong;Kim, A-Jung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5A
    • /
    • pp.511-520
    • /
    • 2011
  • In this paper, we introduce a multiuser (MU) scheduling method for multiuser amplify-and-forward relay systems, which selects both the transmission mode, i.e., either one- or two-hop transmission, and the desired user via two steps. A closed-form expression for the average achievable rate of the proposed scheduling is derived under two transmission modes with MU scheduling, and its asymptotic solution is also analyzed in the limit of large number of mobile stations. Based on the analysis, we perform our two-step scheduling algorithm: the transmission mode selection followed by the user selection that needs partial feedback for instantaneous signal-to-noise ratios (SNRs) to the base station. We also analyze the average SNR condition such that the MU diversity gain is fully exploited. In addition, it is examined how to further reduce a quantity of feedback under certain conditions. The proposed algorithm shows the comparable achievable rate to that of the optimal one using full feedback information, while its required feedback overhead is reduced below half of the optimal one.

Multirate Multicarrier DS/CDMA with 2-Domain Spreading (2차원 확산을 사용하는 다중전송률 MC-DS/CDMA 시스템)

  • Kim, Nam-Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.27-35
    • /
    • 2011
  • Multicarrier-Direct Sequence/Code Division Multiple Access(MC-DS/ CDMA) which is a combination of Orthogonal Frequency Division Multiplexing(OFDM) and DS/CDMA has been of significant interest as a means to take such advantages as bandwidth efficiency, high bit rate and robustness against multipath fading. In this paper we study a reduced-complexity multiuser detection aided multirate MC-DS/CDMA with time(T)-domain and frequency(F)-domain spreading. The one- dimensional orthogonal variable spreading factor(1D OVSF) code extracted from 2D OVSF code are used as a spreading code in T/F-domain. The proposed system will use code grouping interference cancellation(CGIC) receiver to reduce Multiuser Interference(MUI). The CGIC receiver uses code grouping by the correlation properties of 1D OVSF code and dose not requires the code information and activity of other user. The multiuser detector with CGIC receiver will be analyzed in Time- and Frequency-domain separately(jointly). The system performance is analytically derived in Additive White Gaussian Noise(AWGN) channel and we also compare the system performance between proposed system and T/F spreaded single(multi) rate multiuser MC-DS/CDMA system. In the computer simulation results, the proposed receiver of demonstrated huge performance improvement over conventional matched filter receiver.

Multiuser Bit-Interleaved Coded OFDM with Limited Feedback Infonnation (제한된 궤환정보를 이용한 다중사용자 BIC-OFDM)

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.2A
    • /
    • pp.107-114
    • /
    • 2008
  • In wireless access systems, there has been much interest in enhancing the performance of orthogonal frequency division multiplexing OFDM) in a frequency selective fading channel. If the channel is static and is perfectly known to both the transmitter and the receiver, the water-filling technique with adaptive modulation is known to be optimal. However, for OFDM systems, this requires intensive traffic overheads for reporting channel side information on all subcarriers to the transmitter In this paper, we propose an adaptive modulation and coding scheme for bit-interleaved coded OFDM (BIC-OFDM) for downlink packet transmissions with reduced feedback information. To minimize the feedback information, we employ a rate adaptation method based on the OFDM symbol rather than on each subcarrier. To illustrate the performance gap between the optimal water-filling and the proposed scheme, we will compare cutoff rates for both schemes. It is shown that the loss is less than 2dB while the proposed scheme significantly reduces the feedback payloads. Also, the OFDM system in multiuser environment with subcarrier grouping is considered. It is shown that by exploiting multiuser diversity the throughput of the proposed scheme approaches the channel outage capacity as the number of users and the number of subcarrier groups increase.

Multiuser Precoding and Power Allocation with Sum Rate Matching for Full-duplex MIMO Relay (전이중 MIMO 릴레이를 위한 다중 사용자 Precoding 및 Sum Rate 정합 기반 전력 할당 기법)

  • Lee, Jong-Ho;Shin, Oh-Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.12C
    • /
    • pp.1020-1028
    • /
    • 2010
  • Relay has attracted great attention due to its inherent capability to extend the service coverage and combat shadowing in next generation mobile communication systems. So far, most relay technologies have been developed under the half-duplex (HD) constraint that prevents relays from transmitting and receiving at the same time. Although half-duplex relay (HDR) is easy to implement, it requires partitioning of resource for transmission and reception, reducing the whole system capacity. In this paper, we propose a multinser precoding and power control scheme with sum rate matching for a full-duplex (FD) multiple-input multiple-output (MIMO) relay. Full-duplex relay (FDR) can overcome the drawback of HDR by transmitting and receiving on the same frequency at the same time, while it is crucial to reduce the effect of self-interference that is caused by its own transmitter to its own receiver. The proposed precoding scheme cancels the self-interference of the FDR as well as to support multiuser MIMO. Moreover, we suggest a power allocation scheme for FD MIMO relay with the constraint that the sum rate of the relay's received data streams is equal to that of the relay's transmit data streams.

An Efficient frame size Decision and Resource Allocation Method for Multiuser OFDM/TDD System in Multicell Environment (멀티셀 기반의 다중 사용자 OFDM-TDD 시스템에서 효과적인 프레임 크기 결정과 자원 할당 기법)

  • Keum Seung-Won;Kim Jung-Gon;Shin Kil-Ho;Kim Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.8A
    • /
    • pp.760-768
    • /
    • 2006
  • In this paper, an novel resource allocation scheme is proposed for adaptive multiuser OFDM-TDD systems in multiuser, multicell and frequency-selective time-varying channels. The optimal frame size and mode switching level of each user is determined by maximizing the spectrum efficiency. In multi-cell environment, the allocation scheme must consider the cochannel interference of other cells. The measured SINR is changed in one frame size because the interference is changed. The frame size is determined to consider both the optimal frame size and cochannel user's frame size of other cells. we propose the efficient resource allocation scheme which is satisfied the target BER.

Performance Improvement for Nonchoherent DS/CDMA Reverse Links using Channel Estimation and Multiuser Detection (비동기 복조 DS/CDMA 역방향 링크에서 채널 추정 및 다중 사용자 검파를 이용한 성능 개선)

  • 홍대기;윤석현;홍대식;강창언
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.755-764
    • /
    • 2001
  • In this paper, we propose maximum likelihood (ML) decision feedback channel estimation (DFCE) for M-ary orthogonal modulation in direct sequence/code division multiple access (DS/CDMA) systems. The proposed DFCE uses the maximum combiner output in a RAKE receiver as decision feedback information, enabling M-ary orthogonal signals to be demodulated coherently and a RAKE receiver to use a em maximal ration combining (MRC) scheme. However, the performance of the proposed DFCE in the multiuser environment is severely degraded due to multiple access interference (MAI). To overcome this problem, a multistage parallel interference cancellation (PIC) scheme is combined with the proposed DFCE for multiuser environments. Accurate knowledge of the channel coefficient estimated by the proposed DFCE is used to regenerate the signal of each user for the multistage PIC scheme. According to the results of our simulations, the performance of coherent demodulation using the proposed system is significantly improved in comparison with conventional noncoherent demodulation.

  • PDF

Low Complexity Antenna Selection based MIMO Scheduling Algorithms for Uplink Multiuser MIMO/FDD System (상향링크 다중사용자 MIMO/FDD 시스템을 위한 낮은 복잡도의 안테나 선택 기반 MIMO 스케줄링 기법)

  • Kim, Yo-Han;Cho, Sung-Yoon;Lee, Taek-Ju;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.12C
    • /
    • pp.1164-1174
    • /
    • 2007
  • Antenna selection based MIMO schedulers are proposed to achieve the optimal performance with low complexity in uplink multiuser MIMO/FDD system. In this paper, three heuristic schedulers are proposed to approach the optimal performance which is achieved by the optimal Brute-Force Scheduler. Two search methods called sub-set and full-set way are also discussed to set up the antenna channels to be the candidates of the scheduler. Simulation results show that the sum rate and BER performance of the proposed CSS and SOAS schemes are about the same to that of the brute-force scheduler with affordable complexity, while RC-SOAS with further reduced complexity achieves almost the optimal performance in the case of small number of antennas. Moreover, the complexity can be additionally reduced by the sub-set search method when the number of transmit and receive antennas are 2 respectively, which is applicable in the realistic systems.

A Hybrid Multiuser Detection Algorithm for Outer Space DS-UWB Ad-hoc Network with Strong Narrowband Interference

  • Yin, Zhendong;Kuang, Yunsheng;Sun, Hongjian;Wu, Zhilu;Tang, Wenyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.5
    • /
    • pp.1316-1332
    • /
    • 2012
  • Formation flying is an important technology that enables high cost-effective organization of outer space aircrafts. The ad-hoc wireless network based on direct-sequence ultra-wideband (DS-UWB) techniques is seen as an effective means of establishing wireless communication links between aircrafts. In this paper, based on the theory of matched filter and error bits correction, a hybrid detection algorithm is proposed for realizing multiuser detection (MUD) when the DS-UWB technique is used in the ad-hoc wireless network. The matched filter is used to generate a candidate code set which may contain several error bits. The error bits are then recognized and corrected by an novel error-bit corrector, which consists of two steps: code mapping and clustering. In the former step, based on the modified optimum MUD decision function, a novel mapping function is presented that maps the output candidate codes into a feature space for differentiating the right and wrong codes. In the latter step, the codes are clustered into the right and wrong sets by using the K-means clustering approach. Additionally, in order to prevent some right codes being wrongly classified, a sign judgment method is proposed that reduces the bit error rate (BER) of the system. Compared with the traditional detection approaches, e.g., matched filter, minimum mean square error (MMSE) and decorrelation receiver (DEC), the proposed algorithm can considerably improve the BER performance of the system because of its high probability of recognizing wrong codes. Simulation results show that the proposed algorithm can almost achieve the BER performance of the optimum MUD (OMD). Furthermore, compared with OMD, the proposed algorithm has lower computational complexity, and its BER performance is less sensitive to the number of users.

Symbol Based Rate Adaptation in Coded MIMO-OFDM Systems (심볼 기반의 적응 변조 기법을 이용한 채널 부호화된 MIMO-OFDM 시스템)

  • Sung, Chang-Kyung;Kim, Ji-Hoon;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.50-58
    • /
    • 2008
  • The use of space-division multiple access(SDMA) in the downlink of multiuser multi-input/multi-output(MIMO) wireless transmission systems can provide substantial gains in system throughput. When the channel state information(CSI) is available at the transmitter, a considerable performance improvement can be attained by adapting the transmission rates to the reported CSI. In addition, to combat frequency selective fadings in wideband wireless channels, bit-interleaved coded OFDM(BIC-OFDM) modulation schemes are employed to provide reliable packet delivery by utilizing frequency diversity through channel coding. In this paper, we propose an adaptive modulation and coding(AMC) scheme combined with an opportunistic scheduling technique for the MIMO BIC-OFDM with bandwidth-limited feedback channels. The proposed scheme enhances the link performance by exploiting both the frequency diversity and the multiuser diversity. To reduce the feedback information, the proposed AMC scheme employs rate adaptation methods based on an OFDM symbol rather than on the whole subchannels. Simulation results show that the proposed scheme exhibits a substantial performance gain with a reasonable complexity over single antenna systems.

Novel Turbo Receiver for MU-MIMO SC-FDMA System

  • Wang, Hung-Sheng;Ueng, Fang-Biau;Chang, Yu-Kuan
    • ETRI Journal
    • /
    • v.40 no.3
    • /
    • pp.309-317
    • /
    • 2018
  • Single carrier-frequency-division multiple access (SC-FDMA) has been adopted as the uplink transmission standard in fourth-generation cellular networks to facilitate power efficiency transmission in mobile stations. Because multiuser multiple-input multiple-output (MU-MIMO) is a promising technology employed to fully exploit the channel capacity in mobile radio networks, this study investigates the uplink transmission of MU-MIMO SC-FDMA systems with orthogonal space-frequency block codes (SFBCs). It is preferable to minimize the length of the cyclic prefix (CP). In this study, the chained turbo equalization technique with chained turbo estimation is employed in the designed receiver. Chained turbo estimation employs a short training sequence to improve the spectrum efficiency without compromising the estimation accuracy. In this paper, we propose a novel and spectrally efficient iterative joint-channel estimation, multiuser detection, and turbo equalization for an MU-MIMO SC-FDMA system without CP-insertion and with short TR. Some simulation examples are presented for the uplink scenario to demonstrate the effectiveness of the proposed scheme.