• Title/Summary/Keyword: multiuser channel

Search Result 181, Processing Time 0.02 seconds

Precoding Method for Increasing System Capacity in Multiuser MIMO Downlink Channels (다중사용자 MIMO 하향링크 채널 환경에서 시스템 용량 향상을 위한 프리코딩 기법)

  • Kim, Kwang-Yoon;Lee, Jong-Sik;Koo, Sung-Wan;Yang, Jea-Su;Kim, Jin-Young
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.12-16
    • /
    • 2008
  • In this paper, we study precoding techniques for co-channel interference suppression in multiuser MIMO systems. DPC is optimal techniques to achieve the system capacity of multiuser MIMO downlink channels. DPC is not proper in practical wireless systems because complexity is very high. So block diagonal precoding for multiuser MIMO downlink channel is studied. The block diagonal precoding is used to suppress co-channel interference between multiuser. Block diagonal precoding method, whose complexity is reduced by modified null space operation, change multiuser MIMO channel to multiple single-user MIMO channel. We also use V-BLAST decoder in receiver. V-BLAST decoder can achieve increased system capacity in proportion to the number of users. We show improved system performance by using computer simulation.

  • PDF

Regularized Channel Inversion for Multiple-Antenna Users in Multiuser MIMO Downlink (다중 안테나 다중 사용자 하향 링크 환경에서 Regularized Channel Inversion 기법)

  • Lee, Heun-Chul;Lee, Kwang-Won;Lee, In-Kyu
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.260-268
    • /
    • 2010
  • Channel inversion is one of the simplest techniques for multiuser downlink systems with single-antenna users. In this paper, we extend the regularized channel inversion technique developed for the single-antenna user case to multiuser multiple-input multiple-output (MIMO) channels with multiple-antenna users. We first employ the multiuser preprocessing to project the multiuser signals near the null space of the unintended users based on the MMSE criterion, and then the single-user preprocessing is applied to the decomposed MIMO interference channels. In order to reduce the complexity, we focus on non-iterative solutions for the multiuser transmit beamforming and use a linear receiver based on an MMSE criterion. Simulation results show that the proposed scheme outperforms existing joint iterative algorithms in most multiuser configurations.

Simulation Models for Investigation of Multiuser Scheduling in MIMO Broadcast Channels

  • Lee, Seung-Hwan;Thompson, John S.
    • ETRI Journal
    • /
    • v.30 no.6
    • /
    • pp.765-773
    • /
    • 2008
  • Spatial correlation is a result of insufficient antenna spacing among multiple antenna elements, while temporal correlation is caused by Doppler spread. This paper compares the effect of spatial and temporal correlation in order to investigate the performance of multiuser scheduling algorithms in multiple-input multiple-output (MIMO) broadcast channels. This comparison includes the effect on the ergodic capacity, on fairness among users, and on the sum-rate capacity of a multiuser scheduling algorithm utilizing statistical channel state information in spatio-temporally correlated MIMO broadcast channels. Numerical results demonstrate that temporal correlation is more meaningful than spatial correlation in view of the multiuser scheduling algorithm in MIMO broadcast channels. Indeed, the multiuser scheduling algorithm can reduce the effect of the Doppler spread if it exploits the information of temporal correlation appropriately. However, the effect of spatial correlation can be minimized if the antenna spacing is sufficient in rich scattering MIMO channels regardless of the multiuser scheduling algorithm used.

  • PDF

Analysis on the Impact of Multiple-Antenna Transmit Schemes on Multiuser Diversity

  • Lee, Myoung-Won;Mun, Cheol;Yook, Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.4
    • /
    • pp.222-228
    • /
    • 2006
  • In this paper, the performance of a multiuser diversity system combined with a multi-element transmit antenna system is analyzed under the assumption of independent Rayleigh fading. A measure of system .level performance is an average channel capacity as a function of the number of users and antennas. Average channel capacity is obtained from the instantaneous signal-to-noise ratio(SNR) distribution combined by both transmit diversity(TD) at each link and multiuser diversity at system level. Numerical results show that closed-loop antenna techniques provide an additional gain with multiuser diversity system due to array gain, even though space diversity gain reduces multiuser diversity gain. On the other hand, the space-time block coding(STBC) that provides full order space diversity gain only has a destructive influence on multiuser diversity.

SLNR-based Precoder Design in Multiuser Interference Channel with Channel Estimation Error

  • Seo, Bangwon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.40-52
    • /
    • 2020
  • In this paper, we consider a precoder design problem for multiuser interference channel. Most of the conventional schemes for precoder design utilize a signal-to-interference-plus-noise ratio (SINR) as a cost function. However, since the SINR metric of a desired transmitter-receiver pair is a function of precoding vectors of all transmitters in the multiuser interference channel, an analytic closed-form solution is not available for the precoding vector of a desired transmitter that maximizes the SINR metric. To eliminate coupling between the precoding vectors of all transmitters and to find a closed-form solution for the precoding vector of the desired transmitter, we use a signal-to-leakage-plus-noise ratio (SLNR) instead as a cost function because the SLNR at a transmitter is a function of the precoding vector of the desired transmitter only. In addition, channel estimation errors for undesired links are considered when designing the precoding vector because they are inevitable in a multiuser interference channel. In this case, we propose a design scheme for the precoding vector that is robust to the channel estimation error. In the proposed scheme, the precoding vector is designed to maximize the worst-case SLNR. Through computer simulation, we show that the proposed scheme has better performance than the conventional scheme in terms of SLNR, SINR, and sum rate of all users.

Hybrid SNR-Adaptive Multiuser Detectors for SDMA-OFDM Systems

  • Yesilyurt, Ugur;Ertug, Ozgur
    • ETRI Journal
    • /
    • v.40 no.2
    • /
    • pp.218-226
    • /
    • 2018
  • Multiuser detection (MUD) and channel estimation techniques in space-division multiple-access aided orthogonal frequency-division multiplexing systems recently has received intensive interest in receiver design technologies. The maximum likelihood (ML) MUD that provides optimal performance has the cost of a dramatically increased computational complexity. The minimum mean-squared error (MMSE) MUD exhibits poor performance, although it achieves lower computational complexity. With almost the same complexity, an MMSE with successive interference cancellation (SIC) scheme achieves a better bit error rate performance than a linear MMSE multiuser detector. In this paper, hybrid ML-MMSE with SIC adaptive multiuser detection based on the joint channel estimation method is suggested for signal detection. The simulation results show that the proposed method achieves good performance close to the optimal ML performance at low SNR values and a low computational complexity at high SNR values.

Equal Gain Block Decomposition Methods for Multiuser MIMO Networks

  • Hwang, Insoo;Kang, Inseok;Hwang, Intae;You, Cheolwoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1156-1173
    • /
    • 2021
  • In this paper, we propose a new joint precoder and postcoder design strategy to support multiple streams per user in multiuser multiple-input multiple-output (MIMO) systems. We propose two step precoding strategies using equal channel gain decomposition and block diagonalization at the transmitter. With the proposed precoder, the multiuser MIMO channel can be decomposed into multiple parallel channels with equal channel gain per user. After applying receive postcoder which is generated and sent by the transmitter, we can use ML based decoder per stream to achieve full receive diversity. Achievable sum rate bound and diversity performance of the proposed algorithm are presented with feedback signaling design and quantitative complexity analysis. Simulation results show that the proposed algorithm asymptotically approaches to the sum rate capacity of the MIMO broadcast channel while maintaining full diversity order.

Opportunistic Channel State Information Feedback for Eigen based Scheduling in Multiuser MIMO Systems (다중 사용자 다중 입출력 시스템에서 고유값 기반 스케줄링을 위한 선택적 채널 정보 피드백 기법)

  • Kim, Sung-Tae;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.7
    • /
    • pp.6-12
    • /
    • 2009
  • In this paper, we propose the opportunistic channel state information feedback scheme for eigen based scheduling in multiuser MIMO systems. According to 3GPP SMC channel model, the system capacity of MU-MIMO systems is severly degraded, since the antennas are highly correlated in urban macro cell. Although the eigen based scheduling scheme mitigates the adverse effect of the antenna correlation, it achieves only small amount of the multiuser diversity gain. Since the opportunistic channel state information scheme can achieve sufficient multiuser diversity gain, the system capacity of MU-MIMO systems can be improved. The system capacity improvement is verified by the computer simulation results.

Multiuser Channel Estimation Using Robust Recursive Filters for CDMA System

  • Kim, Jang-Sub;Shin, Ho-Jin;Shin, Dong-Ryeol
    • Journal of Communications and Networks
    • /
    • v.9 no.3
    • /
    • pp.219-228
    • /
    • 2007
  • In this paper, we present a novel blind adaptive multiuser detector structure and three robust recursive filters to improve the performance in CDMA environments: Sigma point kalman filter (SPKF), particle filter (PF), and Gaussian mixture sigma point particle filter (GMSPPF). Our proposed robust recursive filters have superior performance over a conventional extended Kalman filter (EKF). The proposed multiuser detector algorithms initially use Kalman prediction form to estimated channel parameters, and unknown data symbol be predicted. Second, based on this predicted data symbol, the robust recursive filters (e.g., GMSPPF) is a refined estimation of joint multipaths and time delays. With these estimated multipaths and time delays, data symbol detection is carried out (Kalman correction form). Computer simulations show that the proposed algorithms outperform the conventional blind multiuser detector with the EKF. Also we can see it provides a more viable means for tracking time-varying amplitudes and time delays in CDMA communication systems, compared to that of the EKF for near-far ratio of 20 dB. For this reason, it is believed that the proposed channel estimators can replace well-known filter such as the EKF.

Performance Analysis of Blind Channel Estimation for Precoded Multiuser Systems

  • Xu, Zhengyuan
    • Journal of Communications and Networks
    • /
    • v.4 no.3
    • /
    • pp.189-198
    • /
    • 2002
  • Precoder has been shown to be able to provide source diversity and design flexibility. In this paper we employ precoding techniques for block transmission based on a multirate filterbank structure. To accommodate multiuser communication with variable data rates, different precoders with corresponding coefficients and up/down sampling rates are used. However, due to unknown multipath distortion, different interferences may exist in the received data, such as multiuser interference, intersymbol interference and interblock interference. To estimate channel parameters for a desired user, we employ all structured signature waveforms associated with different symbols of that user and apply subspace techniques. Therefore better performance of channel estimator can be achieved than the conventional subspace method based only on the signature of the current symbol. The delay for that user can also be jointly estimated. Channel identifiability conditions and asymptotic channel estimation error are investigated in detail. Numerical examples are provided to justify the proposed method. gest either multicode (MC) or multiple processing gain (MPG) mechanism [2], while requiring data rates to be integral multiples of some basic low-rate. In order to support variable rate transmission however, a comprehensive scheme needs to be investigated.