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Multiuser Channel Estimation Using Robust Recursive
Filters for CDMA System

Jang-Sub Kim, Ho-Jin Shin, and Dong—Ryeol Shin

Abstract: In this paper, we present a novel blind adaptive multiuser
detector structure and three robust recursive filters to improve the
performance in CDMA environments: Sigma point kalman filter
(SPKF), particle filter (PF), and Gaussian mixture sigma point par-
ticle filter (GMSPPF). Our proposed robust recursive filters have
superior performance over a conventional extended Kalman filter
(EKF). The proposed multiuser detector algorithms initially use
Kalman prediction form to estimated channel parameters, and un-
known data symbol be predicted. Second, based on this predicted
data symbol, the robust recursive filters (e.g., GMSPPF) is a re-
fined estimation of joint multipaths and time delays. With these
estimated multipaths and time delays, data symbol detection is car-
ried out (Kalman correction form). Computer simulations show
that the proposed algorithms outperform the conventional blind
multiuser detector with the EKF. Also we can see it provides a more
viable means for tracking time-varying amplitudes and time delays
in CDMA communication systems, compared to that of the EKF
for near-far ratio of 20 dB. For this reason, it is believed that the
proposed channel estimators can replace well-known filter such as
the EKF.

Index Terms: Multiuser channel estimation, non-linear recursive
filter, particle filter.

I. INTRODUCTION

Code division multiple access (CDMA) has been adopted
by many of the modern wireless communication systems as
the physical layer technique. It is used already in IS-95 and
¢dma2000 networks developed by the Qualcomm Corp., and is
the main radio interface for 3G proposals. Among the many ad-
vantages of the CDMA that can be highlighted is the increased
network capacity, increased data rates and the possibility it of-
fers in accommodating services with different data rates.

Multipath, multiple access interference (MAI), and near-far
effects are the three main influences on the performance of
CDMA -based wireless communication systems (e.g., cdma2000
and UMTS). Multiuser detection has the potential to reduce the
MALI and solve the near-far problem in a CDMA channel [1].
The analysis of multi-user detectors for fading channels is often
conducted under the ideal assumption of perfect channel esti-
mation [2]-[5]. Imperfect channel estimation degrades the per-
formance of multiuser detectors since many multiuser detectors
require channel estimates to cancel the MAI and/or to perform
coherent reception. To improve the performance of multiuser
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detectors for rapidly varying fading channels, we introduce the
robust recursive filters that provide an improvement in the ac-
curacy and stability over the extended Kalman filter (EKF). We
focus on the channel estimators and propose a novel multiuser
detector based on the adaptive channel estimators such as sigma
point kalman filter (SPKF), particle filter (PF), and gaussian
mixture sigma point particle filter (GMSPPF). This structure is
shown Fig. 1, similarly configured with 2 stages PIC (parallel
interference cancellation) multiuser detector.

The problem of channel parameter (channel coefficients and
code delays) estimation has been addressed in the literature
before (see [6]), and has proved to be difficult due to its in-
herited nonlinearity. The previously proposed approaches are
mainly based on the use of the EKF. In a number of cases, when
EKF methods are applied, the estimators are divergent [7], [8]
since the measurement model has the highly nonlinear nature
of time delay and it uses a first-order Taylor series expansion
of the nonlinear terms around the mean values. A new filtering
method, called SPKF has been employed to tackle the nonlinear-
ity, showing its effectiveness in terms of divergence reduction
and error propagation [9]. The SPKF addresses this problem
by using a deterministic sampling approach. The SPKF guar-
antees the same performance as the truncated second order fil-
ter, with the same order of calculations as a conventional EKF
but without the need to calculate any approximation or deriv-
atives. The EKF, in contrast, only achieves first-order accu-
racy. Caffery [10] adapted a new way of parameterization (un-
scented filter: UF) for Gaussian variables and instead, applied
extended Kalman filtering for channel estimation in CDMA en-
vironments. This UF has some problem that the calculated co-
variance can be non-positive semi-definite. As a result, this fil-
ter can diverge. SPKF developed to address this problem [9],
[11], [12]. Thus, we apply the SPKF for multiuser detection in
CDMA system.

The PF has already been successfully applied to the problems
arising in the field of controls, statistics and digital communica-
tions, in particular, demodulation in fading channels [13], [14]
and detection in synchronous CDMA [15]. Tanya [16] and Iltis
[17] has recently developed a particle filtering method to es-
timation of only channel coefficients and code delays. In his
approach, the unknown symbol sequence is obtained through a
standard algorithm. Punskaya [18] has developed estimation of
the channel coefficients, code delays, and symbols jointly using
particle filtering techniques in flat Rayleigh fading. However,
we extend the development of multiuser parameter estimators
to joint estimation of the channel coefficients and code delays
in frequency selective Rayleigh fading, and we added to pro-
pose a new unknown symbol detection mechanism (similar to
Kalman predict correction forms). Thus, this paper proposes a
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novel receiver structure, since unknown symbols are discrete-
value and channel parameters (channel coefficient and code de-
lay) are (complex or real) continuous-values. In general, the PF
rely on importance sampling and, as a result, require the design
of proposal distributions that would approximate the posterior
distribution reasonably well [19], [20]. The most common PF
strategy is to sample from transition prior distribution. Since the
prior proposal distribution employs no information from obser-
vations in proposing new samples, its use is often ineffective and
leads to poor filtering performance. In order to overcome these
problems, we additionally propose new method such as the GM-
SPPF [21].

The GMSPPF combines importance sampling (IS) based
measurement update step with a SPKF based Gaussian sum fil-
ter for the time-update and proposal density generation. The
GMSPPF approximates prior, proposal, and posterior density
function as GMM (Gaussian mixture model) using banks of par-
allel SPKF. The updated mean and covariance of each mixand
follow from the SPKF updates. The GMSPPF has better esti-
mation performance when compared to standard PF and SPPF,
and we can reduce computational cost. The proposed GMSPPF
results in better performance in the parameter (including other
channel coefficients) estimation. The GMSPPF can apply for
filtering with any nonlinearity and any distributions. In this pa-
per, we propose three robust recursive filters as multiuser detec-
tor channel estimator and a novel multiuser detector structure.
Three robust recursive filters as channel estimators are SPKF,
PF, and GMSPPF. And we simply explain a novel multiuser
detector structure. The unknown symbol sequence is obtained
through a novel multiuser detection algorithm, and channel co-
efficients and time delays are estimated using three robust esti-
mators, in order to overcome the EKF’s weak points. Kalman
filtering, in its prediction form, is employed to track the chan-
nel and time delays, and make an estimate of the current symbol
data instead of decision directed (DD) mode. After the unknown
symbol data is estimated, the proposed receiver will conduct a
refined estimation of the channel and time delay using the robust
recursive filters. And finally the proposed receiver will make a
refined estimation of the unknown symbol data. Thus, the pro-
posed receiver structure is similar with Kalman filtering form
(prediction and correction). The tracking error analysis for the
multiusers’ channel coefficients and delays may show better per-
formance over the EKF.

This paper is organized as follows. The signal, channel model,
and estimation/detection objectives, used throughout the paper
are introduced, with a description of problem formulation in
Section II. Section III is devoted to the issues of channel estima-
tion using a conventional EKF and our proposed robust recursive
filtering methods (SPKF, PF, and GMSPPF). The computer sim-
ulation performance results are given in Section I'V. Finally, we
conclude our study in Section V.

II. IMPLEMENTATION OF A MANAGEMENT
APPLICATION

A. System and Channel Model

Assuming that each of K users transmits over an M -path
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fading channel, the received signal is given by

K M

r) =YY crilDdem,ar(l — Ty — 7ea (1)) + 1) (1)

k=1 1i=1

where ci (1) represents complex channel coefficients, dj y,,
is the mth symbol transmitted by the kth user, m; = |(I—
k(1)) /Ts] , Ty is the symbol interval, ax(!) is the PN spreading
waveform used by the kth user, 73 ;(!) is the time delay intro-
duced by the ith path of the kth user, and n(l), AWGN (additive
white Gaussian noise) is assumed to have a mean of zero and
variance of 2 = Ny/2.

B. State-Space Model

Let the unknown parameters be represented by the following
2K M x 1. vector.

x=[c 7|7 2)
where ¢ = [ci1,c12, - ,¢im, 0 ,CaM, - ,CK, 0, CR M)
andT - [7—117T12a""TIM7”'77—2M>"'aTKla"'aTKM]-

From [6], we can write the state model as

x(l4+1)=FO)x({) + v() 3)

where F(I) = diag{F.,F,} is 2KM x 2KM augmented
by the state transition matrix, v = [ve? v,T]is 2KM x 1
process noise vector with mean of zero and covariance matrix
Q = diag{Qc, Q+} , and diag{-} is the diagonal matrix. The
scalar measurement model follows from the received signal of

(L)by
z(1) = h(x(1)) +n(l)

where the measurement z(!) = r(I), and

“4)

K M
h(x(1) =Y erildim,ar(l = mOT, = m2.4(1))).

k=1 1i=1

The scalar measurement z(!) is a nonlinear function of the
state x({) . If it is assumed that the noise vectors v{l) and n(l)
are individually and mutually uncorrelated with correlation ma-
trices

®)

where d;; is the two-dimensional Kronecker delta function.

C. Detection / Estimation Objectives

Since unknown symbols are discrete-values and channel pa-
rameters (channel coefficient and code delay) are (complex or
real) continuous-values, our novel receiver will be implemented
two steps: Channel estimation and unknown symbol detection.
The symbols d and the channel coefficient and time delay x are
unknown. Our aim is to obtain an MAP (maximum a posterior)
estimate of the symbols

d(z) = arg max p(d|z, %) (6)
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Fig. 1. Proposed multiuser detection structure.

and the MMSE (minimum mean square error) estimates of the
channel coefficients and time delays X = E{x|z,d} with esti-
mated error covariance

P = B{[x(1) - x(UN][x(0) - x(n)]" |2, d}. Q]
This problem does not admit any analytical solution and, thus,
we propose a novel receiver structure. In order to detect the sym-
bol d, assuming that channel and delay estimates x are avail-
able as depicted Fig. 1. The recursive algorithm based on this
description is given in next section, we also discuss how the
proposed structure may be used for simultaneous channel esti-
mation.

ITII. NOVEL ADAPTIVE MULTIUSER RECEIVER AND
CHANNEL ESTIMATORS

As we consider that channel parameters are (complex or real)
continuous values and unknown symbols are discrete values,
a novel multiuser detector based on the GMSPPF is shown in
Fig. 1. To channel estimation and symbol detection, estimation
of x and detection of d steps are recursively alternated. In [10],
the receiver operated in decision-directed mode. We proposed a
novel multiuser detector based on the recursive filters (RF) such
as SPKF, PF, and GMSPPF, and it is shown Fig 1, similarly con-
figure with 2 stages PIC multiuser detector. Our proposed chan-
nel estimators can employ all types multiuser detectors that need
to estimate channel coefficient and time delay. To track the time
varying channels and symbol detection, we exploit the recursive
nature of the Kalman filtering. The prediction and correction
steps at the [th iteration for the proposed receiver are:

1. Prediction
« 1-Estimation step: Obtain a rough estimate, X, using state
equation
Xiji-1 = Fxi-1.
¢ 2-Detection step: Make an initial estimate of the current
transmitted symbols, d,;;_; ,using the ob-
_ servation vector, z; , and X;;_;
diji1(z) = arg max p(d|z, Xpj—1).
2. Correction
« 3-Estimation step: Refine the channel estimate using RF
and estimated symbols to yield X,
% = RF(dy-1, 21).-
¢ 4-Detection step: Re-estimate symbols, d; , from %;
di(z) = argmax p(d|z, %).

Since CDMA measurement model is nonlinear, we cannot
use the KE. The EKF has probably had the most solution use
the MMSE estimation in nonlinear estimation. The EKF takes
the linear approximation by the Taylor series expansion of the
nonlinear models. The EKF approximates the state distribution
using a Gaussian random variable, which is then propagated an-
alytically through the first-order linearization of the nonlinear
system. The EKF does not take into account the second and
higher order terms in mean and fourth and higher order terms in
the covariance are negligible. These approximations can intro-
duce large errors in the true posterior mean and covariance of the
transformed random variable in many practical situations, lead-
ing to suboptimal performance and divergence of the filter. The
EKF also need to analytical calculate Jacobians (or Hessian).

To improve the multiuser channel estimation accuracy over
EKF, we propose the SPKF, PF, and GMSPPF. And to allevi-
ate the implementation complexity more than sequential Monte
Carlo filtering method such as PF, we propose the GMSPPE. We
will study robust recursive filtering in this section.

A. Sigma Point Kalman Filter

In order to improve the accuracy, consistency and efficiency
of EKF algorithms applied to CDMA channel estimation, we
introduce the SPKFE. This technique and its variations [9] have
been used widely in engineering and the physical sciences to
estimate parameters from noisy data.

The main idea of the SPKF is as follows: Instead of lin-
earizing the nonlinear function through a truncated Taylor-series
expansion at a single point (mean value of the random vari-
able), we rather linearize the function through a linear regres-
sion between points drawn from the prior distribution of the
random variable, and the true nonlinear functional evaluations
of those points. Since this approach takes into account the sta-
tistical properties of the prior random variable, the resulting
linearization error tends to be smaller than that of a truncated
Taylor-series linearization. For in-depth, technically more rig-
orous treatment of the topic, the reader is directed to other
sources [9].

The SPKF can be summarized briefly as follows. For each
measurement time [+ 1, a set of deterministically selected points
(sigma points) is used to approximate the distribution of the pre-
vious state estimates from time ! using a normal distribution
with a mean of X;;;, and variance proportional to the state covari-
ance matrix, Py);. These points, termed sigma points, are specifi-
cally selected to capture the dispersion around X;);. These sigma
points are then projected forward in time using the linear state
function in (3) and weighted after the transformation to yield
X411 and Py ;. Then, the same sigma points are projected
using the measurement function in (3), re-weighted, and used
to update the estimates in conjunction with the new observation
at time [ to yield X;4 ;11 and Py ;3. The abovementioned
sigma point transformation algorithm, capitalized on repeated
applications of a transformation technique known as the scaled
unscented transformation, is computationally efficient. This is
because the sigma points are selected according to a determin-
istic scheme (instead of a random sampling scheme as in the
PF). A set of 2n + 1 weighted point where S = {W;, X;;} (such
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that >-F_, W, = 1) are chosen to reflect certain properties of x.
From [9], the resulting set of sigma points and welghts utilized
by the SPKF are

Xo(I1) = =(U1)
X (Ul = x(U) + (V(m+ NP i=1,---,n
Xirn () = %) - (/(n+ NPUD)); i=1,---,n
W™ = A (n+ ) (8)
W(C) =XMn+N+1-a*+15)
w™ = w9 =1/{2(n+ )}

where & € R, \/(n + A)P((|l), is the ith row or column of the
matrix square root of (n + A) P (/l) and W; is the weight that
associated with the ith point. A = a?(n + k) — n is a scaling
parameter and 7 = /(n + A). « is a positive scaling parameter
which can be made arbitrarily small to minimize higher order
effects(e.g., le — 2 < a < 1). k is a secondary scaling parame-
ter which is usually set to either 0 or 3 — n. 3 is an extra degree
of freedom, and is a scalar parameter used to incorporate any
extra prior knowledge of the distribution of x (for Guassian dis-
tributions, 3 is optimal). Further details pertaining to the SPKF
are summarized below in three major steps [9].

Algorithm 1: Channel estimator based on SPKF

1. The sigma point is calculated as
X)) =

(%) =@ +n/PAD+Q X1
2. The SPKF time updates as follows

o The transformed set is given by instantiating each point

through the process model

Xi(U1) = FX (1)),
o The predicted mean is computed as
g1+ 1)) = 227 WX (L4 1)0).
+ The predicted covariance is computed as
P(l+1)1) = X2 WXL+ 1)) — %(1 + 1]1)]
X+ 101 — % (1 + 1|D))7T.

« Instantiate each of the prediction points through the obser-

vation model

P+ Q].

Z({+1|1) = h(X({+ 11)).
« The predicted observation is calculated by
Z(1+11) = X2 W™z, + 1)0).
3. The SPKF measurement updates as follows
« The innovation covariance is given by
P.(l+1)=
2 WO Z, (11— 20+ 1D)][Ze 1+ 1|1 — 2 +1)0)]7
o Since the observation noise is additive and independent, the
innovation covariance is
P,(l+1) =P, (I+1)+0o2.
» The cross-covariance matrix of x and z, is determined by
P..l+1)=
S WX (D) —R(+1|1)][Ze (14111 -2+ 1)
« The Kalman gain matrix is found according to
K(+1)=Px./Py.
o The update mean (parameter estimated) is calculated
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x(1+1) = x(+1H+K{I+v(l+1)
o(l+1) = z(I+1)—z(I+1)).

o The update covariance (error covariance matrix are up-

dated) is also provided by
Pl+1)=PIl+1)~-K(I+ 1P, KT +1).

In the SPKF where the SUT (scaled unscented transform) is
employed in the prediction stages follows the given nonlinear
function, no harmful loss in the above is expected. It is not nec-
essary to calculate the Jacobian (and Hessian if 2nd order ap-
proximation in the Taylor series) and the prediction stage only
consists of standard linear algebra operations (matrix square
root, etc.).

B. PFarticle Filter

The PF uses the sequential Monte Carlo based method. These
methods allow for a complete representation of the posterior dis-
tribution of the states using sequential importance sampling and
resampling [19], [20]. Whereas the standard EKF and SPKF
have the limitation that they do not apply to general non-
Gaussian distributions, PF makes no assumptions on the form
of the probability densities in question, i.e., nonlinear, non-
Gaussian.

The key idea is to represent the required posterior density
functions using a set of random samples (particles) with asso-
ciated weights and computing estimates based on these samples
and weights. As the number of samples becomes very large, this
Monte Carlo characterization becomes an equivalent representa-
tion to the usual functional description of the posterior probabil-
ity density function (pdf), and the PF approaches the optimal
Bayesian estimate. If we know the posterior density function,
we can easily derive various estimates of the system’s states in-
cluding means, modes, medians and confidence intervals.

The posterior density p(xg.;|21.1), where xg,; = {xo, X3, -
,xi} and z1; = {21, 22, -, 21}, constitutes the complete so-
lution to the sequential estimation problem. In many applica-
tions, such as tracking, it is of interest to estimate one of its
marginals, namely the filtering density p(x;|z1.;). By comput-
ing the filtering density recursively, we do not need to keep track
of the complete history of the states. Thus, from a storage point
of view, the filtering density is more parsimonious than the full
posterior density function. If we know the filtering density, we
can easily derive various estimates of the system’s states includ-
ing means, modes, medians and confidence intervals. We show
how the filtering density may be approximated using sequential
importance sampling techniques.

In the PF, the posterior density at [ can be approximated as:

Zw”a (x0: — x3) 9)

p(Xo0:t]21:0)
where {x (@ ) N | are a set of particles drawn from the posterior
dlStI'lbuthIl and 6 (+) is the Dirac delta function. The weights

(wl ) themselves can be shown to be updated as [19]:

) — g0 P00 i) 10

= Wi 1)) .0
g(x{ 1%}, 21)
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where the proposal distribution q(xl(l)[xl(i)l, z;) represents all
the a priori knowledge. It is, however, usually difficult to sam-
ple directly from a given posterior distribution. Thus, we choose
what can be called a proposal distribution that is of probability
distribution from which we can easily sample [19]. The selec-
tion of the proposal function is one of the most critical design
issues in importance sampling algorithms and is the source of
the main concern. The more accurate the proposal is to the true
posterior, the better the performance of the particle filter. It is
often convenient to choose the proposal distribution to be the
prior [19]

D). 1)

a(x” x{2y, 20) = p(alx(?

Again, we choose the stochastic model given by (3) as our
model for the proposal distribution. As a result of not incor-
porating the most recent observations, this would seem to be the
most common choice of proposal distribution since it is intuitive
and can be implemented easily. This has the effect of simplify-
ing (10) to

wl(i) = wl(z_)lp(zl |xlz) )

(12)

The update weights are based on the likelihood. New esti-
mates of the posterior are then computed based on the previous
samples. A common problem with the SIS particle filter is the
degeneracy phenomenon [19], where after a few iterations, all
but one particle will have negligible weight. To avoid this de-
generacy, a resampling stage may be used to eliminate samples
with low importance weights and multiply samples with high
importance weights. A common heuristic used to maintain an
appropriate number of particles is to first calculate the effective
sample size N,z introduced in [20], and defined as:

~ N .
Negs = 1/(2(%@)2) :

A threshold number of particles Ny, is then defined such that
N, < N. Multiple resampling of particles then becomes nec-
essary whenever Ns¢ < Ngp. To CDMA channel estimation,
the PF are summarized below in two major steps

(13)

Algorithm 2: Channel estimator based on PF

1. Initialize weights ({ = 0)

e« Fori=1:N
- Draw xl(l) — p(xo)
- Evaluate the importance weights w((f) = p(z0|xél)) , ac-
cording to (12)
- Normalize the weights (" = wi”/ Z L wd)
2. Fori=1,2,-

. Sampling Stage
- Predict via the process model (3) :

- Evaluate the weights : w, +)1 = w( 2

R

(zl+1|xlz+1)
- Normalize the weights : @Y, = w® el )/ Z lwl(J+)1

1
o Resampling Stage
- Fori=1:N

If Negy < Ny, Resampling
Else, No Resampling

» Inference : MMSE - %; = E[x|2] = % Zf\; xl(i)

C. Gaussian Mixture Sigma Point Particle Filter

We present a further refinement of the PF called the GM-
SPPF [21]. This filter has equal or better estimation perfor-
mance when compared to the PF and SPPF. The GMSPPF
combines importance sampling based measurement update step
with a SPKF based Gaussian sum filter for the time-update and
proposal density generation. The GMSPPF also is a recursive
process consisting of two stages. The time update state, where
the previous observations and state were used to predict the cur-
rent state, and the measurement update state, where current ob-
servation is used to increase the accuracy of the predicted state.

In the time update stage, the GMSPPF approximates prior,
proposal and posterior density function as GMM using banks
of parallel SPKF. The updated mean and covariance of each
mixand follow from the SPKF updates. The predictive state den-
sity is now approximated by the GMM

Za(g )N xl,

where N is the number of particles.
In the measurement update stage, the GMSPPF uses a finite
GMM representation of the posterior filtering density

Z a(g)N xl7

This is recovered from the weighted posterior particle set
of the IS based measurement update stage, by means of a
expectation-maximization (EM) [22] step. The EM algorithm
can be used to obtain Gaussian Mixture approximations from
these particles and weights. In particular, EM is applicable to
problems, where the observable data provide only partial in-
formation or where some data are “missing”. With this mech-
anism, the EM recovered from the GMM posterior further miti-
gates the “sample depletion” problem through its inherent “ker-
nel smoothing” nature. The EM algorithm provides an iterative
method to solve for the which satisfies

p(xi]z1—1) = pg(xi|21-1) ,lsfg)) (14)

p(xilz1) = pg(xi|2) @ p@y (15

6= arg max p(x16) (16)

where the Gaussian mixture is specified by the set of para-
meters 8 = {al(l),-u ,afG),ul(l), e ,ul(G),Pl(l),n- ,Pl(G)}.
Specifically, the EM algorithm is a two-step iterative algorithm
which works as follows: Givena 8 | find the next value )

via
E — step : Q(9]8"®) =
M —step:

E[log p(x(6)|z,6'"]

g+ — arg max Q(6]6®).

See [22] for more detailed explanation of the EM Algorithm for
GMMs. Finally, The Gaussian mixture approximation lends an
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advantage that MMSE estimates of the state and its error covari-
ance can be obtained straightforwardly. The conditional mean
state estimate and the corresponding error covariance can be cal-
culated through the sampling and resampling stage as described
above

Z w(l) (1)

Zw(’) — %) (x —x)T. 17)
Alternatively, it can be directly fitted from the EM stage
G
- Z a(g) (g)
g=1

The time update and measurement update algorithm of GM-
SPPF for CDMA channel estimation is summarized in the fol-
lowing sections.

Algorithm 3: Channel estimator based on the GMSPPF

1. Initialization
o At time [, assume the posterior state density, the process
and measurement noise densities are approximated by the
following G, I and J component GMMs, respectively

G
po(xi-1]21-1) = Zagi)lN(xl—l;ul(g)l’Pl(z)l)

g=1

Z/Bl( )1N Vl 1;u vi_ 17Q[(z_)1)

=1

27(])]\[ nl,u%]l) 1’Rl(j))

le1

where «,(3, and v are the mixing weights, G, I, and J
are the number of mixing component and N(x;u, P) is a
normal distribution with mean vector u and positive def-
inite covariance matrix P. For clarity of notation, define
g’ = g + (1 — 1)G and note that references to ¢’ implies
references to the respective g and 7, since they are uniquely
mapped. Similarly define ¢” = ¢’ + (j — 1)GI with the
same implied unique index mapping.

e Forj = 1,2,---,J, set p;(n;) = N(nl;ug),Rl(j)), for
7 = 1,2, .. -,I, set ﬁi(Vl_l) = N(lel;ugl)fl, Qll)), for
9=1,2,---, G, setpy(x;-1) = N(x;_1; ufg)l, Pl(f)l).

2. The GMSPPF time updates as follows
e Forg =1,---,G&,
- The time update step of a SPKF employing the state (3)

ﬁg’(xl—1|zl —1) = al(g )N(xl_ L (9) P(g ))

- 1/220‘59)1 -1

g=1 =1

o = o6
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- Forg" =1,---,G",
* The measurement update step of each SPKF employ-
ing the measurement (4)

By (x1|2) = N(xi—1; 0 %i)(g >>
af) = @)y DgH) /Z Z NCENORE)
g'=1j=1
where S;(j) = p;(z1|x;).

« The predictive state density is now approximated by the

GMM , .,
po(xiz1) = So_, o NG ), B)).

« The posterior state density (which will only be used as the
proposal distribution in the IS-based measurement update
step) is approximated by the GMM

Py(xilz) = S0 o N Gl P).
3. Measurement update

o Draw N samples {xl(’) i
posal distribution p,(x;|2;) a
ing importance weights

o _ Plal)pe(x”15%)
Wy = .

« ERIED |
« Normalize the weights: w(" = "/ Z;\Izl b
o Resampling stage (optlonal) If Nepr < Nyp , take N sam-
:t=1,2,---, N},
where the probability to take sample i is wl(z). Let wl(l) =
1/N. Where N;s and Ny, are the effective sample size
and threshold value, respectively.
¢« Use a EM or WEM algorithm to fit a G-component
GMM to the set of weighted particles {w;(4), Xz( )
1,2,---, N} representing the updated GMM approximate
state posterior distribution at time [, i.e.,
py(xilz) = chzl Oél(g)N(Xl, (9) P(g))
+ Inference : MMSE
- adirect weighted sum of the particle set: (17)
- or after the posterior GMM has been fitted: (18)

=1,2,---,N} from the pro-
nd calculate their correspond-

ples with replacement from the set {xll)

IV. NUMERICAL ANALYSIS

We examine the performance of the EKF, SPKF, PF, and GM-
SPPF to make parameter estimates for a multiuser detector. We
compare the four robust estimators with an estimator based on
EKF [6]-[8]. Note that the form of channel amplitude cor-
responds to a Rayleigh uncorrelated scattering model for the
channel [23]. The multipath profile structures are chosen as
the 3-tap delay line model of JTC (Joint Technical Committee)
Model [24]. The model is deviated slightly by assuming a classi-
cal Doppler spectrum for all taps. The multipath complex coef-
ficients of the channel can be generated using the Jakes Fading
Model [25], which provides taps into the appropriate distribu-
tions and near the correct tap autocorrelations, although the taps
are somewhat correlated. For the state model, the augmented
state transition matrix of (3) be chosen to F = 0.99991. Also the
process noise covariance matrix is Q = 0.0011. We simulate a
two-user scenario (the weaker user and the stronger user) where
the users’ PN spreading codes are chosen from the set of Gold
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codes of length 31 and generated by the polynomials 2° +z2 +1
and z° + 2* + 2% + 22 + 1, in order to show that our proposed
multiuser receiver has more near-far resistance than the EKF-
based multiuser receiver. The SNR (signal-to-noise ratio)at the
receiver of the weaker user is 5 dB. The near-far ratio (P, /Py)
is 20 dB. The oversampling factor (sample/chip) is 2. Because
AWGN is Gaussian, the three parameters (a, §, and ) of the
SPKF estimator are assumed o« = 1, 8 = 2, and x = 0. One as-
pect about using EKF, SPKF, PF, and GMSPPF-based estimator
is the same initialization values. In the simulations, the data bits
are detected from decision-directed adaptation, where the sym-
bols d,m are replaced by the decisions dy ., shown in Fig. 1.
The tracker for a two-user and three-multipath system is simu-
lated in a fading channel where the channel coefficients are time
varying, but the delay remains constant. Furthermore we assume
that the weaker user (User 1) and the stronger user (User 2) are
moving with normalized Doppler frequencies of f;7° ~ 0.02.
The sampling time is taken to be T; = 1/(1.2288Mbps X 2)
and the bit rate is assumed to be 1/}, = 9600bps.

Figs. 2 (a) and (b) show the estimation error for the channel am-
plitude and time delays for the weaker user’s firth muitipath with
imperfect power controlled using the EKF, SPKF, PF, and GM-
SPPF, respectively. As the figure indicates, the estimator/tracker
is able to accurately track the time-varying channel amplitude of
the weaker user, but expect for the EKF. It can be seen that the
user is capable of accurately converging to the correct delays and
channel amplitude. The GMSPPF has larger fluctuation before
convergerce, since it doesn’t fit the GMM well and the GMM
of variance increases. In near-far ratio of 20 dB and normal-
ized Doppler frequency (f41" =~ 0.01), proposed filters are able
to accurately converge to the correct values of the parameters.
The ability of the estimator to track time-varying parameters is
shown in Figs. 3 and 4 where the time-delays are time-varying
with 3333.33 m/s and the channel amplitudes are fast fading
with normalized Doppler frequency (47" = 0.1). As the figure
indicates, the proposed estimators are able to accurately track
the time-varying channel amplitude of weaker and stronger user,
even for fast fading rates of 1000 Hz (Doppler). Although the
amount of change of time delays for each user doesn’t appear to
be significant in the Fig. 4, we note that the users’s time delays
change by 0.0017, over 30 bits (1860 samples). Assuming the
propagation speed is the speed of light in a vacuum (3 x 108 m/s)
and T, = T;/31 = 3.36 ps, then weaker and stronger users are
moving (v = f4xc/f = 10000Hz x (3 x 108 m/s)/900MHz =
3333.33m/s) directly away from and home to base station, re-
spectively. This means that each user moved a distance of
104.16m over a time span of 3.1msec(30 bits). The estimators
were able to converge and track the parameters in such a great
velocity.

Also, although the average near-far ratio is 20 dB, the instan-
taneous ratio varies drastically due to the fading of the channel
since there is no power control. As shown in Fig. 5, the instanta-
neous near-far ratio with respect to the second user varies from
—10dB to + 50 dB. In spite of the varying powers, the proposed
estimators are still able to display excellent performance except
for the EKF.

To further quantify the performance of the estimator, the
RMSE from simulation of the estimator is presented. In near-far

—— EKF
— = =~ SPKF

e PR |l
- —- GMSPPF

Tracking error with channel amplitude

05 — ; ; ; ;

3
Bit Number

(a)

- - GMSPPF

Tracking error with time delay (chip)

3
Bit Number
(b)

Fig. 2. Parameter estimation errors for channel amplitudes and time
delay of firth path with weaker user.

situations, the first user is the weaker user. A root mean square
error is computed for the estimates as follows:

Ns
RMSEy(n) = % > /IX X0 (19)
i=1

where X(X = [x(1),x(2), - - -, x(n)]) denotes the RMSE of the
channel parameters of the amplitude and time delay), at iter-
ation n of the estimator. N, is the number of ensemble sam-
ples used to form the RMSE and X is the estimates of channel
parameters at time n. Table 1 shows the RMSE of ensemble
samples for the estimators (SPKF, PF, and GMSPPF) of the am-
plitudes and time delays of three multipath, respectively. The
number of ensemble samples was chosen to be N, = 300. The
RMSE terms defined in (19) were computed for the parameter
estimates formed during 300 iterations of the filter. In the case
of a near-far ratio of 20 dB, the RMSE of the GMSPPF-based
estimator is smaller than those of the SPKF and PF-based esti-
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Fig. 3. Time-varying channel amplitude tracking of firth path with the
weaker user: (a) The weaker user, (b)stronger user.

mator. Thus, the GMSPPF-based estimator experiences a total
lower RMSE than the SPKF and PF-based estimator, resulting
in a drastic improvement in performance. In the case of a near-
far ratio of 0 dB, the result is nearly the same. Specially, the
GMSPPF-based estimator shows better performance irrespec-
tive of the near-far ratio.

Fig. 6 shows the BER (bit error rate) of the weaker user ver-
sus Near-far ratio considering normalized Doppler frequency
faT = 0.05 and E,/Ny = 5 dB. In this simulation, we don’t
use multipath diversity since we are compared with channel es-
timators’ performance. A lower bound for the performance of
the tracking algorithm is given by using the ideal channel state
information (CSI), i.e., perfectly known channel at the receiver
side. The black solid line is a lower bound having ideal chan-
nel state information. The EKF-based estimator’s BER perfor-
mance is very poor compared to the other proposed algorithms.
The GMSPPF-based estimator’s BER performance is best but it
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Fig. 4. Time-varing delay tracking of firth multipath with the weaker user
(lower) and the stronger user (upper).
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Fig. 5. Instantaneous near-far radio for the weaker user without power
control.

doesn’t large gap compared to the SPKF and PF. According to
near-far ratio increase, BER performance is worse.

The complexity of the EKF, SPKF, PF, and GMSPPF ap-
proach are simply evaluated and compared. The EKF is ap-
proximately O(L3) from the matrix times matrix multiplication
in the most time consuming step, the SPKF is approximately
O(L?(2L + 1)) = O(L®) from the matrix times matrix multi-
plication FX,;?%, , whereas the PF is approximately O(NL?)
from the matrix times vector multiplication and sampling step,
and the GMSPPF is approximately O(GL3) from SPKF step
and O(GL?N) from EM step in case of the maximum com-
plexity. If N > L, the GMSPPF is approximately O(GL?N).
This indicates that the particle filter is approximately 250 times
more complex than SPKF in an application with L. = 4 and
N = 1000. And the GMSPPF is at least about 3 times less
complex than PF in an application with L = 4, N = 100, and
G = 3, even though their MSEs are comparable.

A computation time is presented in Fig. 7, for simulations
implemented on an Intel Pentium IV-2.4 GHz processor using
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Table 1. RMSE and variance of ensenble samples for the SPKF, PF,
and GMSPPF (firth path of three multipath).

Near-far | Channel RMSE

ratio parameters | SPKF | PF | GMSPPF

20 dB 1 0.21237 | 0.23450 | 0.19982
Co 0.24765 | 0.21989 | 0.21137
T 0.21225 | 0.22960 | 0.07452
T 0.21472 | 0.21284 | 0.05322

0dB c1 0.22145 | 0.20937 | 0.20833
co 0.24318 | 0.23146 | 0.22472
1 0.20256 | 0.21713 | 0.07823
Ty 0.20672 | 0.22154 | 0.01459

The weaker user
6.7 T T T T T T T

—=——— Perfect Channe!
i | —O— EKF

=5dB)

Bit error rate (Eb/No

0 L 1 L i
0 5 10 15 20 25 30 35 40
Near Far Ratio

Fig. 6. BER of the weaker user with SNR =5dB.

MATLAB. The computation time for GMSPPF and PF is much
greater than that of the SPKF (SUF) and EKF. More importantly,
the GMSPPF has a considerably shorter computation time that
the PF, even though their MSEs are comparable. This fact indi-
cates that the GMSPPF has much more competition than the PF
applying for CDMA system in case of computational complex-
ity and accuracy. The difference in computation time increases
proportional to the number of particles.

V. CONCLUSION

In this paper, we have applied the SPKF, PF, and GMSPPF-
based algorithm to the estimation of multipath delays and re-
lated channel coefficients in CDMA environments. The SPKF,
PF, and GMSPPF have been demonstrated better performance
over the EKF. Our proposed three channel estimators can pro-
vide a better alternative to nonlinear filtering than the EKF, since
it has superior performance over the other algorithm. Computer
simulations also show that it provides a more viable means of
tracking time-varying amplitudes and delays in CDMA com-
munication systems than the EKE. Furthermore, proposed es-
timators are shown to have the ability to converge to the user’s
true coefficients and time delays for a near-far ratio of 20 dB. It
was shown that the GMSPPF approach not only outperforms the

1200 T T

1000 ke TSP RTINS o I SO

Computation times (seconds)

Mean square error

®

Fig. 7. The computation time and average RMSE of the EKF, SPKF, PF,
and GMSPPF. (a) N = 50 (per mixands) for GMSPPF and N = 500
for PF. (b) N = 100 (per mixands) for GMSPPF and N = 1000 for
PF.

standard PF, but has better performance when compared to the
SPKFE. Futhermore, the GMSPPF mitigates the effects of sam-
ple depletion by combining the improved SPKF based proposal
distribution of the SPKF, with a novel WEM based posterior
density recovery. This results in increased operational robust-
ness. It consistently performs better than or equal to the well
known EKF, with the added benefit of ease of implementation
in that no analytical derivatives (Jacobians or Hessians) need to
be calculated. The GMSPPF is of a less complexity when com-
pared with the PE. QOur future work is focused on non-Gaussian
channel (fundamental middleton class A noise) model in CDMA
systems.

ACKNOWLEDGMENTS

This work was supported by the Korea Research Foundation
Grant funded by the Korean Government(MOEHRD). (KRF-
2006-214-D00111)

REFERENCES

[1]1 A. Duel-Hallen er al., “Multiuser Detection for CDMA System,” [EEE
Personal Commun. Mag., pp. 46-58, Apr. 1995.

[2]1 R.Lupas and S. Verdu, “Linear multiuser detectors for synchronous code-
division multiple access channel,” IEEE Trans. Inf. Theory, vol. IT-35,
pp- 123-136, Jan. 1989.

[3] M.K. Varanasi and B. Aazhang, “Near-optimum detection in synchronous
code-division multiple access channel,” IEEE Trans. Commun., vol. COM-
39, pp. 725-736, May 1991.

[4] A.Duen-Hallen, “Decorrelating decision-feedback multiuser detector for
synchronous code-division multiple access channel,” IEEE Trans. Com-
mun., vol. COM-41, pp. 285-290, Feb. 1993.

[5] P. Patel and J. Holtzman, “Analysis of a simple successive interference
cancellation scheme in DS/CDMA system,” IEEE J. Sel. Areas Commun.
- Special issue on CDMA, vol. 12, pp. 796-807, June 1994.

{6] R. A. ILitis, “Joint estimation of PN code delay and multipath using
the extended Kalman filter,” IEEE Trans. Commun., vol. 38, Oct. 1990,
pp- 1677-1685.

[71 R. A.lIltis and L. Mailaender, “An adaptive multiuser detector with joint
amplitude and delay estimation,” IEEE J. Sel. Areas Commun., vol. 12,
June 1994.

[8] R.A.Iltis, “A DS-CDMA tracking mode receiver with joint channel/delay



228

(9]
[10]

(1

(121

[13]

[14]

{153

[16]

{17]

(18]

(191

(20]

[21]

[22]

(23]

[24]

[25]

JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL.9, NO.3,SEPTEMBER 2007

estimation and MMSE detection,” IEEE Trans. Commun., vol. 49, Oct.
2001.

R. van der Merwe and E. Wan, “Efficient derivative-free Kalman filters for
online learning,” in Proc. ESANN, Apr. 2001.

J. Jr. Caffery and G. L. Stuber, “Nonlinear multiuser parameter estima-
tion and tracking in CDMA systems,” IEEE Trans. Commun., vol. 48,
pp. 2053-2063, Dec. 2000.

R. van der Merwe et. al., “The unscented particle filter,” Oregon Gradu-
ate Institute Electrical and Computer Engineering, vol. OR-97006, Aug.
2000.

J. Kim and et. al., “Nonlinear multiuser parameter estimation by the scaled
unscented filter in CDMA systems,” in proc. The 2004 Int. Conf. on Wire-
less Networks, June 2004.

R. Chen, X. Wang, and J.S. Liu, “Adaptive joint detection and decoding in
flat-fading channels via mixture Kalman filtering,” IEEE Trans. Inf. The-
ory, vol. 46, pp. 2079-2094, Sept. 2000.

E. Punskaya et. al., “Particle filtering for demodulation in fading chan-
nels with non-Gaussian additive noise,” IEEE Trans. Commun., vol. 49,
pp. 579-582, Apr. 2001.

E. Punskaya et. al., “Particle filtering for multiuser detection in fading
CDMA channels,” in Proc. IEEE 11th Signal Processing Workshop on
Statistical Signal Processing, Ang. 2001.

T.Bertozzi et. al., “Channel tracking using particle filtering in unresolvable
multipath enrironments,” EURASIP J. Applied Signal Process., pp. 2328
2338, 2004.

R. A. Itis, “A sequential monte carlo filter for joint linear/nonlinear state
estimation with application to DS-CDMA,” IEEE Trans. Signal Process.,
vol. 51, pp. 417-426, Feb. 2003.

E. Punskaya, A. Doucet, and W. J. Fitzgerald, “Particle filtering for joint
symbol and code delay estimation in DS spread spectrum systems in mul-
tipath environment,” EURASIP Applied Signal Process., pp. 23062314,
2004.

A. Doucet, “On sequential simulation-based methods for bayesian filter-
ing,” Tech. Report CUED/F-INFENG/TR 310, (Cambridge University),
1998.

M. Arulampalam et. al., “A tutorial on particle filters for on-line non-
linear/non-gaussian bayesian tracking,” IEEE Trans. Signal Process.,
pp. 174-188, Feb. 2002.

R. van der Merwe and E. Wan.“Gaussian mixture sigma-point particle fil-
ters for sequential probabilistic inference in dynamic state-space models,”
in Proc. ICASSP, Apr. 2003.

F. Pernkopf and D. Bouchaftra, “Genetic-Based EM algorithm for learn-
ing gaussian mixture models,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 27, Aug. 2005.

T. S. Rappaport, Wireless Communications. New York : IEEE Press, 1996.
Kaveh Pahlavan and Allen H. Levesque, Wireless Information Networks.
John Wiley & Sons, 1995.

Gordon L. Stuber, Principles of Mobile Communication. 2nd Ed. Kluwer
Academic, 2001.

Jang-Sub Kim received the M.S. and Ph. D. de-
grees in school of electrical and computer engineering
from Sungkyunkwan University, Seoul, Korea in 1999
and 2006, respectively. He is currently with a post-
doctoral in the Department of Electrical Engineering
from Texas A&M University, USA. His research in-
terests include code-division multiple access, detec-
tion/tracking/estimation for wireless/mobile commu-
nications, Monte-Carlo filter (particle filter), inter-
working between overlaid networks, wireless LANS,
wireless sensor network, and position location.

Ho-Jin Shin received the B.S and M.S degrees in
Electrical Engineering from Sungkyunkwan Univer-
sity, Korea, in 1994 and 1999, and Ph.D. degree in
Department of Electrical and Computer Engineering
from Sungkyunkwan University, Korea, in 2006, re-
spectively. Since 2007, he has been working as a post-
doctoral in School of Information and Communica-
tion Engineering in Sungkyunkwan University, Korea.
His research interests include QoS, wireless networks,
mobile communications, and wireless LANs.

Dong-Ryeol Shin received the B.S degree in Elec-
tronic Engineering from Sungkyunkwan University,
Suwon, Korea, in 1980, and the M.S degree in Elec-
trical and Electronic Engineering from KAIST, Dae-
jeon, Korea, in 1982 and Ph.D. degree in Electrical
and Computer Engineering from Georgia Institute of
Technology, Atlanta, U.S.A., in 1992. From 1982 to
1986, he was a researcher at Daewoo Heavy Indus-
tries Ltd. From 1992 to 1994, he was a senior research
engineer at Samsung Data Systems. Since 1994, he
has been a professor of the School of Information and
Communication Engineering in Sungkyunkwan University, Suwon, Korea. His
research interests are in the area of ad-hoc networking, wireless LANs, ubiqui-
tous sensor networks, ubiquitous middleware, P2P network, wireless communi-
cations, and embedded systems.



