• 제목/요약/키워드: multispectral

검색결과 350건 처리시간 0.027초

다중분광 드론영상의 표준화를 위한 전처리 기법 비교·분석 (Comparative Analysis of Pre-processing Method for Standardization of Multi-spectral Drone Images)

  • 안호용;류재현;나상일;이병모;김민지;이경도
    • 대한원격탐사학회지
    • /
    • 제38권6_1호
    • /
    • pp.1219-1230
    • /
    • 2022
  • 농업관측에서의 다중분광 드론은 식생구분 및 식생활력도 분석에 있어 복사량이나 반사도와 같은 물리량을 기반으로 한 정량적이고 신뢰성 있는 데이터가 필요하다. 작황분석 모니터링을 위한 원격탐사 자료의 경우 동일지역에 대해 여러 시기에 걸쳐 촬영된 영상이 요구되며, 특히 엽면적 지수 또는 엽록소와 같은 생물리자료의 경우 동일한 기준에서의 시계열 자료를 통해 분석되므로 직접적으로 비교 가능한 반사도 자료가 필요하다. 드론영상을 기반 정사영상(정합영상)은 전체 영상 화소값이 왜곡되거나 접합 경계면 화소값의 차이가 발생하여 정확한 물리량 산출에 한계를 가진다. 본 연구는 시계열 작황 모니터링을 위한 드론영상의 보정방법에 따른 지상 반사도와 드론영상 기반 식생지수를 산정하고 그 결과를 지상관측자료와 비교하여 전처리 방법에 따른 드론영상의 분광학적 특성을 구명하고자 수행하였다.

드론 다중분광영상과 컴퓨터 비전 기술을 이용한 배추 객체 탐지 알고리즘 개발 (Development of Chinese Cabbage Detection Algorithm Based on Drone Multi-spectral Image and Computer Vision Techniques)

  • 류재현;한중곤;안호용;나상일;이병모;이경도
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.535-543
    • /
    • 2022
  • 농업분야에서 드론을 활용하여 작물의 생육을 진단하고 정보를 영상으로 제공하고 있다. 들녘 단위에 대한 고해상도 드론 영상을 활용하는 경우 객체별 생육정보를 생산할 수 있으나 정확하게 작물을 탐지하고 인접한 객체를 효율적으로 구분하기 위한 작업이 요구된다. 본 연구에서는 작물 객체를 탐지하고 위치 정보를 추출하는 알고리즘을 개발하는 것이 목적이다. 드론 다중분광영상과 컴퓨터 비전 기술을 활용하여 객체 탐지를 위한 알고리즘을 개발하였으며, 대상 작물은 가을배추로 선정하였다. 2018년~2020년까지 가을배추를 대상으로 정식 후 7일~15일 사이의 드론 영상을 취득하였으며, 2019년 영상 기반으로 객체 탐지 알고리즘을 개발한 뒤 2018년, 2020년 영상을 기반으로 알고리즘 평가를 수행하였다. 분광반사도 기반 지수와 식생의 분광반사도 특성을 고려하여 식생 지역을 추출하였다. 이후 추출된 식생 지역에서 객체의 크기를 고려하여 팽창(Dilatation), 침식(Erosion), 이미지 분할 등과 같은 모폴로지(Morphology) 기법을 통해 객체 탐지 정확도를 향상시켰다. 개발된 객체 탐지 알고리즘의 정밀도는 95.19% 이상이었으며, 재현율과 정확도는 각각 95.4%, 93.68% 이상이었다. 객체 탐지 알고리즘의 F1-Score는 0.967 이상으로 나타났다. 본 연구에서 개발한 알고리즘을 이용하여 추출된 배추 객체 중심에 대한 위치 정보는 작물의 재배시기에 따라 영농단계별 의사결정 정보를 제공하기 위한 자료로써 활용될 것이다.

초분광영상을 이용한 서낙동강 조류 발생현황 분석에 관한 연구 (A study on the analysis of current status of Seonakdong River algae using hyperspectral imaging)

  • 김종민;권영화;박예림;김동수;권재현;김영도
    • 한국수자원학회논문집
    • /
    • 제55권4호
    • /
    • pp.301-308
    • /
    • 2022
  • 조류는 수생태계에서 소비자의 에너지를 공급하여 생태계 내 없어서는 안 될 1차 생산자로서 크게 녹조류, 남조류, 규조류로 나뉘어진다. 남조류의 경우 수온이 상승하여 여름철 발생하여 과대 증식하여 녹조현상의 주원인이 되며, 최근 기후 변화로 인해 녹조현상의 발생시기의 변화와 빈도수가 늘고 있는 추세이다. 기존의 조류 조사 방식은 채수 및 센서를 통한 측정으로 이루어지고 있으며 시간, 비용 및 인력의 한계가 나타난다. 이러한 기존 모니터링 방법의 한계를 극복 하기위해 위성영상이나 무인항공기(Unmanned Aearial Vehicles, UAV), 등 탑제체를 운용한 다중분광 및 초분광과 같은 분광기기를 이용하여 원격 모니터링을 수행하는 연구가 진행되어 왔다. 본 연구에서는 조류 배양액 및 하천수 채수를 통한 실험실 규모의 실험을 통해 원격 모니터링의 종 구분에 대한 가능성에 대하여 확인 해보고자 하였다. 초분광 영상을 취득하기 위해 400-1000 nm에서 분석할 수 있는 초분광 센서를 활용하였다. 채수한 하천수의 조류 종 구분을 위한 분광특성을 추출하기 위해 GF/C필터를 이용하여 여과를 진행하여 시료를 제조하여 영상을 수집하였다. 수집된 영상을 방사보정 및 Base (하천수 및 배양보존액 통칭) 제거를 진행하였고 조류의 분광 정보 추출 과정을 통해 시료별 분광 정보를 추출, 분석하여 조류의 분광특성을 파악, 비교분석하여 하천·호소에서의 초분광영상 기반 원격탐사 모니터링의 적용성을 검토하고자 하였다.

Radiometric Tarp를 이용한 현장관측 기반의 차세대중형위성 1호 절대복사보정 사례 연구 (A Case Study on Field Campaign-Based Absolute Radiometric Calibration of the CAS500-1 Using Radiometric Tarp)

  • 전우진;염종민;정재헌;진경욱;한경수
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1273-1281
    • /
    • 2023
  • 절대복사검보정은 위성 센서에서 얻은 전자기 신호의 물리량 변환을 위해 절대복사보정 계수를 결정하는 작업으로 위성 데이터의 정확도 개선 및 다른 위성 데이터와의 비교 및 통합을 위해 수행되어야 한다. 또한, 위성 센서는 시간에 따른 센서 노후화나 환경 조건의 영향을 받아 초기 설정된 보정 계수가 변화할 수 있으므로 주기적으로 이러한 변화를 모니터링 하는 것이 필수적이다. 이 연구에서는 차세대중형위성 1호(CAS500-1)의 다중 분광 채널에 대한 vicarious calibration을 수행하기 위해 필드 캠페인을 수행하였다. 구름이 없는 맑은 날의 조건 하에 총 두 차례의 유효한 현장 관측 자료를 얻었으며, MODTRAN 6 복사전달모델을 활용하여 대기 상단(top-of-atmosphere, TOA) radiance를 모의하였다. 모의된 TOA radiance와 CAS500-1의 digital number (DN)는 선형성은 보였지만, CAS500-1 영상의 넓은 시야각과 saturation 발생으로 향후 변환 계수의 보완이 필요한 것으로 보인다. 하지만, 본 연구는 CAS500-1의 절대복사보정에 대한 첫 시도를 하였으며, 향후 높은 신뢰성을 가진 계수 결정을 목표로 하는 연구들에 유용한 정보를 제공할 것으로 기대된다.

수질 매개변수 추정에 있어서 항공 초분광영상의 가용성 고찰 (Airborne Hyperspectral Imagery availability to estimate inland water quality parameter)

  • 김태우;신한섭;서용철
    • 대한원격탐사학회지
    • /
    • 제30권1호
    • /
    • pp.61-73
    • /
    • 2014
  • 본 연구는 항공 초분광영상을 사용한 수질추정 활용을 검토하고 한강일부분에 대해 가용한 측정자료를 이용하여 초분광영상 기반의 수질추정을 테스트하였다. 원격탐사에 의한 수질추정은 수체에 대한 downwelling과 수체 내에서의 산란과 반사에 대한 관측정보를 이용하는 방법과 원격탐사 센서에 도달하는 upwelling과 수질측정정보와의 선형적 회귀분석을 구하는 방법이 선호된다. 두 방법 모두 유의미한 결과를 도출하지만 수질정보나 산란정보 등 추정에 필요한 보조자료에 의한 영향이 더 클 것으로 판단되었다. 수질 추정 테스트는 팔당댐 하류에 위치한 한강의 일부분에 대해서 적용되었다. AISA eagle 초분광센서로 취득된 자료와 수질관측정보를 선형적 회귀분석을 통한 방법을 적용하였다. 기존 문헌에서 제시된 밴드조합에 대해서 회귀분석한 결과 유의미한 밴드조합으로 $-24.847+0.013L_{560}$의 회귀식을 얻었다 ($L_{560}$은 560 nm 파장에서의 radiance로 $R^2$=0.985). 다중분광영상을 이용했을 경우의 결과와 비교하기 위해서 spectral resampling을 통해 Landsat TM 영상을 생성하여 -55.932 + 33.881(TM, TM3)의 회귀식을 얻을 수 있었다(TM, TM3는 radiance로, $R^2$=0.968). 부유물질 농도는 수질측정지점에서 약 3.75 mg/l 이고, 초분광영상으로 추정된 농도는 약 3.65 mg/l, 시뮬레이션된 TM은 약 5.85 mg/l 로 다중분광영상을 이용했을 경우 과대 추정하는 경향을 보였다. 항공 초분광영상의 활용가치를 높이고 보다 정밀한 값을 추정하기 위해서 영상 전반에 걸친 sun glint 와 같은 영향을 최소화하기 위해 태양고도각을 고려하여 정교한 비행계획을 구성하고 체계적 전처리와 검 보정 체계를 갖출 필요가 있다고 사료된다. 일반적으로 적용된 방법에 따른 테스트로, 대기보정의 정밀성과 부족한 수질측정 샘플자료, 분광밴드의 검색, 적합한 선형회귀모델의 선택, 그리고 정량적 검증방법과 같은 몇 가지 문제점과 제약사항들을 발견할 수 있었다.

초등학교 주변을 중심으로 본 서울시 도시녹지 현황 분석 및 고찰 - 원격탐사 방법을 이용한 식생분류 - (Study on the Current Status Analysis of Urban Green Spaces in Seoul Focusing on Elementary School Surroundings - Remote Sensing Based Vegetation Classification -)

  • 김현옥
    • 한국조경학회지
    • /
    • 제40권5호
    • /
    • pp.8-18
    • /
    • 2012
  • 도시자연은 물리적 환경개선 기능은 물론 사회적, 정서적 측면에서도 중요한 역할을 한다. 특히, 학교에서 생활하는 시간이 많은 우리나라의 경우 학교 옥외공간을 비롯하여 인근에 조성된 녹지공간은 자연체험의 기회가 적은 도시 아이들이 가장 쉽게 자연을 접할 수 있는 일차적인 장소이다. 본 연구에서는 우리나라 대도시의 녹지현황을 학교 주변을 중심으로 살펴보고자 한다. 서울시 185개 초등학교를 선정하고, 학교 옥외공간을 포함한 반경 300m 이내(본 연구에서 '학교존'으로 정의) 주변 녹지 현황을 RapidEye 다중분광 인공위성 영상을 사용하여 분석하였다. 학교존 평균 녹지율은 약 21%이고, 최고 74%에서 최소 0.7%까지 편차가 매우 큰 것으로 나타났다. 그리고 과반수 이상의 학교존 녹지율이 20% 미만이다. 학교존 녹지율이 높은 학교 대부분이 산기슭에 위치하고 있어 산림면적이 학교존 녹지율을 높이는데 기여한 것으로 분석되며, 산림녹지의 경우 식생활력 또한 기타 도심지에 조성된 조경수목식재지보다 상대적으로 높은 것으로 나타났다. 반면, 학교존 녹지율이 낮은 학교들 대부분은 고밀 주택지 인근에 위치하고 있으며, 녹지의 식생활력 또한 상대적으로 낮게 나타났다. 도시산림을 제외한 시가화지역에서 학교존 녹지의 많은 부분을 차지하는 것은 아파트단지내 조경녹지시설이며, 그 밖에 친환경적인 학교 옥외공간이나 가로공원 등 도시오픈스페이스가 차지하는 비중은 미미하다. 이러한 현실을 감안하여, 도시계획적인 맥락에서 학교존 녹지율이 낮은 지역을 우선 대상으로 학교숲 조성사업을 지원하거나 주변지역의 옥상녹화를 장려하고, 학교주변 아파트단지내 녹지공간을 학교옥외공간과 유기적으로 연계하여 쉽게 접근할 수 있는 도시오픈스페이스로 개방하는 등의 체계적인 대책 마련이 필요하다고 하겠다.

GOCI-II 대기보정 알고리즘의 소개 및 초기단계 검증 결과 (Introduction of GOCI-II Atmospheric Correction Algorithm and Its Initial Validations)

  • 안재현;김광석;이은경;배수정;이경상;문정언;한태현;박영제
    • 대한원격탐사학회지
    • /
    • 제37권5_2호
    • /
    • pp.1259-1268
    • /
    • 2021
  • '천리안 해양위성 2호(2nd Geostationary Ocean Color Imager: GOCI-II)는 천리안 해양위성 1호(GOCI)의 후속위성으로 1개의 근자외 채널(380 nm), 8개의 가시광 채널(412, 443, 490, 510, 555, 620, 660, 680 nm), 3개의 근적외 채널(709, 745, 865 nm)의 총 12개 파장대에서 다분광 관측을 하며, 1시간 간격의 시간 해상도로 한반도 주변 동북아 해양, 1일 간격으로 반구(full disk)영역의 해양 환경 자료를 생산한다. 해색 자료처리의 첫 단계로 대기 상층 복사휘도에서 해수표면 반사도를 계산하는 대기보정을 수행하며, GOCI-II의 표준 대기보정은 GOCI 대기보정 방법에 이론적인 기반을 두고 있으며, GOCI-II에 새로 추가된 밴드 중 620, 709 nm를 이용하여 탁도가 높은 해역에서의 대기보정 성능을 향상시켰다. 본 연구에서는 GOCI-II 지상국 시스템에 구현 되어있는 대기보정 알고리즘을 우선 소개하고, 현장 측정 원격반사도 자료를 이용하여 초기단계 검증을 수행하였다. 검증은 1차적으로 대양에서 수집된 현장 자료와의 비교를 통해 수행하였으며 여기서의 대기보정 정확도는 대양 대기보정 정확도 요구범위인 청색 파장대 오차율 5% 이내의 범위를 만족시켰다. 그러나 연안의 해양관측타워에 설치된 무인 관측장비인 AERONET-OC로 수집된 원격반사도 자료를 이용한 추가적인 검증결과에서는 대양과 달리 높은 오차율을 보여주었다. 연안에서의 대기보정 정확도는 추후 추가적인 근적외 파장대 대리교정을 통해 보완이 가능할 것으로 보이며, 지속적인 검보정 활동을 통해 수집된 현장자료들을 이용할 경우 연안뿐 아니라 전체적인 대기보정 성능 향상이 가능할 것으로 기대된다. 이후 검보정 활동을 통해 개선된 대기보정은 주기적으로 GOCI-II 지상국 시스템에 반영하여 재처리 및 재 배포를 수행할 예정이다.

Landsat 위성 영상으로부터 Modified U-Net을 이용한 백두산 천지 얼음변화도 관측 (Observation of Ice Gradient in Cheonji, Baekdu Mountain Using Modified U-Net from Landsat -5/-7/-8 Images)

  • 이어루;이하성;박순천;정형섭
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1691-1707
    • /
    • 2022
  • 한반도와 중국 경계에 위치한 백두산의 칼데라호인 천지호는 계절에 따라 해빙과 결빙을 반복한다. 천지 아래에는 마그마 챔버가 존재하며 마그마 챔버의 변화에 의해 온천수의 온도 및 수압 변화와 같은 화산 전조현상이 발생한다. 이에 따라, 천지호 내에서 다른 부분보다 해빙이 빠르며 결빙기에도 늦게 얼며 물표면 온도가 높은 이상지역이 존재하게 된다. 해당 이상지역은 온천수 방출 지역으로, 이상지역의 얼음변화도 값을 통해 화산활동을 모니터링 할 수 있다. 그러나 지리적, 정치적 그리고 공간적 문제로 천지의 이상지역을 주기적으로 관측하기에는 한계가 존재한다. 따라서 본 연구에서는 Landsat -5/-7/-8 광학위성영상으로부터 Modified U-Net 회귀모델을 이용하여 이상지역내의 얼음변화도를 정량적으로 관측하였다. 1985년 1월 22일부터 2020년 12월 8일까지 이상지역을 갖는 83장의 Landsat 영상의 Visible and Near Infrared (VNIR)대역을 활용하였다. 얼음 변화도를 정량적으로 관측을 위해 VNIR대역에서 수체와 얼음과의 상대적인 분광반사도를 활용하여 새로운 데이터를 만들었다. 가시광선대역과 근적외선 대역이 가지고 있는 정보를 최대한 유지하기 위해 2개의 인코더를 가진 U-Net에 적용하여 얼음변화도를 관측하였으며 Root Mean Square Error (RMSE) 140, 상관계수 0.9968의 높은 예측 성능을 보여주었다. 따라서 Modified U-Net을 활용하면 추후 Landsat 영상으로부터 얼음변화도 값을 높은 정확도로 관측하므로 백두산 화산활동을 모니터링하는 방법 중 하나로 사용될 수 있으며, 다른 화산 모니터링 기법과 더불어 활용한다면 더욱 정밀한 화산감시체계 구축이 가능할 것이다.

드론과 선박을 동시 활용한 내만에서의 GOCI-II 산출물 검증 (Validation of GOCI-II Products in an Inner Bay through Synchronous Usage of UAV and Ship-based Measurements)

  • 백승일;고수윤;임태홍;전기성;도영주;정유진;박소현;이용탁;김원국
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.609-625
    • /
    • 2022
  • 위성산출물의 검증은 위성자료를 이용하게 되는 후속 분석작업에 결정적인 영향을 미친다. 특히, 탁하고 얕은 수심의 육상 인근 해역에서의 해색산출물은 해수구성입자 분포의 복잡성으로 인하여 오랫동안 그 성능 개선이 이루어지지 않고 있어왔다. 또한, 선박이나 고정관측소를 이용한 검증은 위성산출물과 현저히 차이나는 공간범위로 인하여 명확한 한계점을 노출해왔었다. 본 연구는 우선 선박을 이용한 현장조사를 통해서 천리안해양위성2호(GOCI-II)의 주요 산출물인 원격탐사반사도, 엽록소농도, 총부유물농도, 용존유기물 등에 대한 검증을 수행하였다. 둘째로, 본 연구에서는 드론영상을 이용한 산출물 검증을 위한 초기분석결과를 제시하였다. 선박과 위성사이의 공간범위 차이를 메우기 위하여 각 선박 정점에서 드론에 탑재된 MicaSense RedEdge 카메라를 이용해 해수에 대한 다분광 영상을 획득하였다. 향후 드론을 이용한 위성산출물 검증에 활용되도록 드론 고도에 따른 해수복사휘도의 변화를 분석하였다. 제한된 숫자의 현장조사 자료 개수이지만, 검증결과, 555 nm 에서의 GOCI-II 원격탐사반사도는 약 30% 가량 과대추정 되는 것으로 나타났고, 엽록소농도 및 용존 유기물은 현장 측정값과의 상관도가 낮았다. 총부유물농도는 결정계수 약 0.6의 상관도를 나타내었고 약 20%의 불확도를 가지는 것으로 나타났다.

기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정 (Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images)

  • 배세정;손보경;성태준;이연수;임정호;강유진
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.1009-1029
    • /
    • 2023
  • 도시 수목은 탄소를 저장하고 불투수면적을 감소시키는 도시 생태계의 중요 요소이며, 탄소 저장량 및 순환량 산정 시 주요 정보로 활용될 수 있다. 많은 선행 연구에서 항공 라이다 자료 및 인공지능 기법을 활용하여 고해상도 수목 정보를 산출하고 있으나, 항공 라이다 영상은 제공하는 플랫폼이 제한되어 있으며 비용적인 면에서도 한계가 다수 존재한다. 따라서 본 연구에서는 수원시를 대상으로 자료 취득이 용이한 고해상도 위성 영상인 Sentinel-2를 활용하여 기계학습 기반의 도시 내 수목 피복률(fractional tree canopy cover, FTC)을 추정하고자 하였다. Sentinel-2 시계열 영상으로부터 중앙값 합성을 수행하여 수원시 전역에 대한 단일 영상을 제작하여 활용하였다. 도시 내 토지 피복의 이질성을 반영하기 위하여, 30 m 격자내 10 m 해상도의 광학 지수의 평균 및 표준편차 값과 환경부 세분류 토지 피복 지도 기반 항목별 피복률을 계산하여 기계학습 모델의 입력 변수로 활용하였다. 총 4가지의 입력 변수 조합을 설정하여, 입력 변수 구성에 따른 FTC 추정 정확도를 비교 및 평가하였다. 광학 영상의 평균 정보만을 활용(Scheme 1)했을 때 보다 도시 내 이질적인 특성을 반영할 수 있는 표준 편차 및 피복률 정보를 모두 함께 고려(Scheme 4, S4)했을 때 향상된 성능을 나타낼 수 있었다. 검증용 자료에 대해 S4의 Random Forest (RF) 모델이 0.8196의 R2, 0.0749의 mean absolute error (MAE), 및 0.1022의 root mean squared error (RMSE)로 전체 기계학습 모델 중에서 성능이 가장 높게 나타났다. 변수 기여도 분석 결과 광학 지수의 표준 편차 정보는 도시 내 복잡한 토지 피복 지역에 대해 높은 기여도를 나타내었다. 훈련된 S4 구성의 RF 모델을 수원시 전역에 대해 확장 적용하였을 때, 참조 FTC 자료에 대해 0.8702의 R2, 0.0873의 MAE, 및 0.1335의 RMSE의 우수한 성능을 나타냈다. 본 연구의 FTC 추정 기법은 향후 다른 지역에 대한 적용성이 우수할 것으로 판단되며, 도시 생태계 탄소순환 파악의 기초자료로 활용될 수 있을 것으로 기대된다.