• 제목/요약/키워드: multipoint boundary value problem

검색결과 6건 처리시간 0.018초

EXISTENCE AND MULTIPLICITY OF POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS

  • Ji, Dehong;Yang, Yitao;Ge, Weigao
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.79-87
    • /
    • 2009
  • This paper deals with the multipoint boundary value problem for one dimensional p-Laplacian $({\phi}_p(u'))'(t)$ + f(t,u(t)) = 0, $t{\in}$ (0, 1), subject to the boundary value conditions: u'(0) - $\sum\limits^n_{i=1}{\alpha_i}u({\xi}_i)$ = 0, u'(1) + $\sum\limits^n_{i=1}{\alpha_i}u({\eta}_i)$ = 0. Using a fixed point theorem for operators on a cone, we provide sufficient conditions for the existence of multiple (at least three) positive solutions to the above boundary value problem.

  • PDF

MULTIPLICITY OF POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL P-LAPLACIAN

  • Zhang, Youfeng;Zhang, Zhiyu;Zhang, Fengqin
    • Journal of applied mathematics & informatics
    • /
    • 제27권5_6호
    • /
    • pp.1211-1220
    • /
    • 2009
  • In this paper, we consider the multipoint boundary value problem for the one-dimensional p-Laplacian $({\phi}_p(u'))'$(t)+q(t)f(t,u(t),u'(t))=0, t $\in$ (0, 1), subject to the boundary conditions: $u(0)=\sum\limits_{i=1}^{n-2}{\alpha}_iu({\xi}_i),\;u(1)=\sum\limits_{i=1}^{n-2}{\beta}_iu({\xi}_i)$ where $\phi_p$(s) = $|s|^{n-2}s$, p > 1, $\xi_i$ $\in$ (0, 1) with 0 < $\xi_1$ < $\xi_2$ < $\cdots$ < $\xi{n-2}$ < 1 and ${\alpha}_i,\beta_i{\in}[0,1)$, 0< $\sum{\array}{{n=2}\\{i=1}}{\alpha}_i,\sum{\array}{{n=2}\\{i=1}}{\beta}_i$<1. Using a fixed point theorem due to Bai and Ge, we study the existence of at least three positive solutions to the above boundary value problem. The important point is that the nonlinear term f explicitly involves a first-order derivative.

  • PDF

Davidenko법에 의한 시간최적 제어문제의 수치해석해 (The Numerical Solution of Time-Optimal Control Problems by Davidenoko's Method)

  • 윤중선
    • 한국정밀공학회지
    • /
    • 제12권5호
    • /
    • pp.57-68
    • /
    • 1995
  • A general procedure for the numerical solution of coupled, nonlinear, differential two-point boundary-value problems, solutions of which are crucial to the controller design, has been developed and demonstrated. A fixed-end-points, free-terminal-time, optimal-control problem, which is derived from Pontryagin's Maximum Principle, is solved by an extension of Davidenko's method, a differential form of Newton's method, for algebraic root finding. By a discretization process like finite differences, the differential equations are converted to a nonlinear algebraic system. Davidenko's method reconverts this into a pseudo-time-dependent set of implicitly coupled ODEs suitable for solution by modern, high-performance solvers. Another important advantage of Davidenko's method related to the time-optimal problem is that the terminal time can be computed by treating this unkown as an additional variable and sup- plying the Hamiltonian at the terminal time as an additional equation. Davidenko's method uas used to produce optimal trajectories of a single-degree-of-freedom problem. This numerical method provides switching times for open-loop control, minimized terminal time and optimal input torque sequences. This numerical technique could easily be adapted to the multi-point boundary-value problems.

  • PDF

EXISTENCE OF POSITIVE SOLUTIONS FOR BVPS TO INFINITE DIFFERENCE EQUATIONS WITH ONE-DIMENSIONAL p-LAPLACIAN

  • Liu, Yuji
    • 충청수학회지
    • /
    • 제24권4호
    • /
    • pp.639-663
    • /
    • 2011
  • Motivated by Agarwal and O'Regan ( Boundary value problems for general discrete systems on infinite intervals, Comput. Math. Appl. 33(1997)85-99), this article deals with the discrete type BVP of the infinite difference equations. The sufficient conditions to guarantee the existence of at least three positive solutions are established. An example is presented to illustrate the main results. It is the purpose of this paper to show that the approach to get positive solutions of BVPs by using multi-fixed-point theorems can be extended to treat BVPs for infinite difference equations. The strong Caratheodory (S-Caratheodory) function is defined in this paper.

POSITIVE SOLUTIONS FOR MULTIPOINT BOUNDARY VALUE PROBLEMS WITH ONE-DIMENSIONAL p-LAPLACIAN OPERATOR

  • Xu, Fuyi;Meng, Zhaowei;Zhao, Wenling
    • Journal of applied mathematics & informatics
    • /
    • 제26권3_4호
    • /
    • pp.457-469
    • /
    • 2008
  • In this paper, we study the existence of positive solutions for the following nonlinear m-point boundary value problem with p-Laplacian: $\{{{{(\phi_p(u'))'\;+\;f(t,u(t))=0, \;0<t<1,} \atop u'(0)={\sum}{^{m-2}_{i=1}}\;a_iu'(\xi_i),} \atop u(1)={\sum}{^k_{i=1}}\;b_iu(\xi_i)\;-\;{\sum}{^s_{i=k+1}}\;b_iu(\xi_i)\;-\;{\sum}{^{m-2}_{i=s+1}}\;b_iu'(xi_i),}$ where ${\phi}_p(s)$ is p-Laplacian operator, i.e., ${\phi}_p(s)=\mid s\mid^{p-2}s$, p>1, ${\phi}_q\;=\;({\phi}_p)^{-1}$, $\frac{1}{p}+\frac{1}{q}=1$, $1\;{\leq}\;k\;{\leq}\;s\;{\leq}m\;-\;2$, $b_i\;{\in}\;(0,+{\infty})$ with $0\;<\;{\sum}{^k_{k=1}}\;b_i\;-\;{\sum}{^s_{i=k+1}}\;b_i\;<\;1$, $0\;<\;{\sum}{^{m-2}_{i=1}}\la_i\;<\;1$, $0\;<\;{\xi}_1\;<\;{\xi}_2\;<\;{\cdots}\;<\;{\xi}_{m-2}\;<\;1$, $f\;{\in}\;C([0,\;1]\;{\times}\;[0,\;+{\infty}),\;[0,\;+{\infty}))$. We show that there exists one or two positive solutions by using fixed-point theorem for operator on a cone. The conclusions in this paper essentially extend and improve the known results.

  • PDF