For elementary school children, learning the standard multiplication algorithm with accuracy, clarity, consistency, and efficiency is a daunting task. Nonetheless, what should be our expectation in procedural fluency, for example, in finding the product of 25 and 37 among fifth grade students? Collectively, has the mathematics education community emphasized the value of conceptual understanding to the detriment of procedural fluency? In addition to examining these questions, we survey multiplication algorithms throughout history and in textbooks and reconceptualize the standard multiplication algorithm by using a new tool called the Multiplication Aid Template.
큰 -자리수의 2개 10진수에 대한 곱셈을 보다 빠르게 수행하는 방법은 존재하는가? 이 문제는 수학과 컴퓨터공학 분야에서 미해결 문제로 남아 있다. 이 문제에 대해 곱셈 횟수를 줄이는 연구로는 Karatsuba와 Toom-Kook 알고리즘이 있다. 본 논문은 곱셈 횟수를 줄이는 방법과는 완전히 별개로, 10진수 곱셈을 전적으로 덧셈만으로 효율적으로 수행하는 방법을 제안하였다. 제안된 방법은 2진수의 자리이동-덧셈법만으로도 RSA-100과 같이 컴퓨터로 수행이 불가한 매우 큰 자리수의 10진수 곱셈을 수행할 수 있음을 보였다. 제안된 방법은 수행 복잡도 (n) 의 덧셈으로 곱셈을 수행한다.
This paper describes some field multiplication algorithm over GF($2^m$) on 8-bit processor. Through performance comparisons among algorithm, we show that our proposal is faster than existing algorithms. The proposed algorithm save 26.38% of running time compared with naive comb multiplication algorithm which is a kind of lookup-table (LUT) based algorithm. With the proposed algorithm, a scalar multiplication over GF($2^{163}$) can be computed within 1.04 secs on 8-bit MICAz sensor mote.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권2호
/
pp.738-756
/
2020
The modular multiplication is the key module of public-key cryptosystems such as RSA (Rivest-Shamir-Adleman) and ECC (Elliptic Curve Cryptography). However, the efficiency of the modular multiplication, especially the modular square, is very low. In order to reduce their operation cycles and power consumption, and improve the efficiency of the public-key cryptosystems, a dual-field efficient FIPS (Finely Integrated Product Scanning) modular multiplication algorithm is proposed. The algorithm makes a full use of the correlation of the data in the case of equal operands so as to avoid some redundant operations. The experimental results show that the operation speed of the modular square is increased by 23.8% compared to the traditional algorithm after the multiplication and addition operations are reduced about (s2 - s) / 2, and the read operations are reduced about s2 - s, where s = n / 32 for n-bit operands. In addition, since the algorithm supports the length scalable and dual-field modular multiplication, distinct applications focused on performance or cost could be satisfied by adjusting the relevant parameters.
모듈러 곱셈은 ECC의 점 스칼라 곱셈을 위한 핵심 연산이며, ECC 프로세서의 성능에 영향을 미치는 가장 중요한 요소이다. 본 논문에서는 3-way Toom-Cook 곱셈 알고리듬과 수정된 고속 축약 알고리듬을 적용한 256-비트 모듈러 곱셈기 설계에 대해 기술한다. 90-비트 곱셈기 1개와 264-비트 가산기 3개가 사용되었으며, 하드웨어 크기와 소요 클록 사이클 수 사이의 최적화를 이루었다. Zynq UltraScale+ MPSoC 디바이스에 구현하여 모듈러 곱셈기를 검증하였으며, 모듈러 곱셈 연산에 15 클록 사이클이 소요된다.
유비쿼터스 환경에서 계산의 복잡성,메모리,전력소비등의 제약성으로 인하여 공개키 암호시스템을 적용하기는 매우 어렵다. 초타원 곡선 암호시스템은 RSA나 ECC보다 짧은 비트 길이를 가지고 동일한 안전성을 제공한다. 초타원 곡선 암호시스템에서 스칼라 곱셈은 핵심적인 연산이다. T.Lange는 다수의 좌표를 사용하여 초타원 곡선 암호시스템에서 역원 연산이 없는 스칼라 곱셈 알고리즘을 개발 하였다.그러나 다수의 좌표를 사용하는 것은 SCA에 노출되고 더 많은 메모리가 요구 된다. 본 논문에서는 초 타원곡선 암호시스템에서 동시원알고리즘을 가진 안전한 스칼라 곱셈 알고리즘을 개발하였다. 안전성 과 성능을 위하여 동시역원 알고리즘을 적용하였다 개발한 알고리즘은 SPA와 DPA 에 안전하다.
Matrix multiplication is a fundamental mathematical operation that has numerous applications across most scientific fields. In this paper, we presents a parallel GPU computation algorithm for dense matrix-matrix multiplication using OpenGL compute shader, which can play a very important role as a fundamental building block for many high-performance computing applications. Experimental results on NVIDIA Quad 4000 show that the proposed algorithm runs about 208 times faster than previous CPU algorithm and achieves performance of 75 GFLOPS in single precision for dense matrices with matrix size 4,096. Such performance proves that our algorithm is practical for real applications.
표준화된 자연수 곱셈 알고리즘3)은 곱셈의 계산 과정을 간략화한 것으로, 올림이 있는 자연수 곱셈의 경우 올림하는 수를 피승수의 위에 작게 표기하고 있다. 하지만 이러한 올림하는 수 표기 방식은 승수가 한 자리 수인 경우에만 교과서에 제시되고 있어, 승수가 두 자리 수인 경우에는 교사와 학생들이 자기 나름의 표기 방식을 선택하도록 요구하고 있다. 이에 본 연구는 현행 교과서에서의 올림이 있는 자연수 곱셈의 알고리즘 접근 방법을 살펴보고, 3, 4, 5, 6학년 학생들의 올림이 있는 자연수 곱셈 알고리즘에서 나타나는 올림하는 수 표기 방식을 분석하였다. 또한, 핀란드 수학 교과서와 선행 연구에 나타난 올림이 있는 자연수 곱셈 알고리즘 지도 내용을 분석함으로써 자연수 곱셈 알고리즘의 제시 방법에 대한 시사점을 추출하였다. 그 결과로 다음과 같이 제안한다. 첫째, 교사용 지도서나 교과서에 올림하는 수를 표기하는 방법에 대한 예시가 필요하다. 둘째, 올림하는 수를 체계적으로 표기하는 것의 좋음을 학생이 인식하도록 지도되어야 한다. 셋째, 대안적인 자연수 곱셈 알고리즘과 올림하는 수 표기 방법에 대한 교사의 이해가 요구된다.
This paper describes the design of elliptic curve cryptographic (ECC) coprocessor over binary fields for the If card. This coprocessor is implemented by the shift-and-add algorithm for the field multiplication algorithm. And the modified almost inverse algorithm(MAIA) is selected for the inverse multiplication algorithm. These two algorithms is merged to minimize the hardware size. Scalar multiplication is performed by the binary Non Adjacent Format(NAF) method. The ECC we have implemented is defined over the field GF(2$^{163}$), which is a SEC-2 recommendation[7]..
In this paper we propose a bit-sliced modular multiplication algorithm and a bit-sliced modular multiplier design meeting the increasing crypto-key size for RSA public key cryptosystem. The proposed bit-sliced modular multiplication algorithm was designed by modifying the Montgomery's algorithm. The bit-sliced modular multiplier is easy to expand to process large size operands and can be immediately applied to RSA public key cryptosystem.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.