
318 한국정보전자통신기술학회논문지 제4권 제4호

초 타원 곡선 암호시스템에서 동시 역원 알고리즘을

가진 안전한 스칼라 곱셈

박 택 진*

Secure Scalar Multiplication with Simultaneous Inversion

Algorithm in Hyperelliptic Curve Cryptosystem

Taek-Jin Park*

요 약

유비쿼터스 환경에서 계산의 복잡성,메모리,전력소비등의 제약성으로 인하여 공개키 암호시스템을 적용하기

는 매우 어렵다. 초타원 곡선 암호시스템은 RSA나 ECC보다 짧은 비트 길이를 가지고 동일한 안전성을 제

공한다. 초타원 곡선 암호시스템에서 스칼라 곱셈은 핵심적인 연산이다. T.Lange는 다수의 좌표를 사용하여

초타원 곡선 암호시스템에서 역원 연산이 없는 스칼라 곱셈 알고리즘을 개발 하였다.그러나 다수의 좌표를 사

용하는 것은 SCA에 노출되고 더 많은 메모리가 요구 된다. 본 논문에서는 초 타원곡선 암호시스템에서 동시

역원알고리즘을 가진 안전한 스칼라 곱셈 알고리즘을 개발하였다. 안전성 과 성능을 위하여 동시역원 알고리

즘을 적용하였다 개발한 알고리즘은 SPA와 DPA 에 안전하다.

ABSTRACT

Public key cryptosystem applications are very difficult in Ubiquitos environments due to

computational complexity, memory and power constrains. HECC offers the same of levels of

security with much shorter bit-lengths than RSA or ECC. Scalar multiplication is the core

operation in HECC. T.Lange proposed inverse free scalar multiplication on genus 2 HECC.

However, further coordinate must be access to SCA and need more storage space. This paper

developed secure scalar multiplication algorithm with simultaneous inversion algorithm in HECC.

To improve the over all performance and security, the proposed algorithm adopt the comparable

technique of the simultaneous inversion algorithm. The proposed algorithm is resistant to DPA

and SPA.

Keywords : HECC, Jacobian, Scalar multiplication, Simultaneously inversion algorithm, SCA

* 강릉영동대학교 의료전자과 (tjpark@gyc.ac.kr)

접수일자 : 2011년 09월 17일, 수정일자 : 2011년 11월 18일, 심사완료일자 : 2011년 12월 10일

초 타원 곡선 암호시스템에서 동시 역원 알고리즘을 가진 안전한 스칼라 곱셈 319

Ⅰ. Introduction

Elliptic Curve Cryptosystem (ECC) have now

widely been studied and applied in e-commerce,

e-government and other secure communications.

The practical advantages of ECC is that it can

be realized with much smaller parameter com-

pared to the conventional Discrete Logarithm

Problem(DLP) based cryptosystems or RSA, but

with the same levels of security[1].

Hyperelliptic curves, a generalization of ellip-

tic curves, require decreasing field size as ge-

nus increases. Hyperelliptic curves of genus 

achieve equivalent security of ECC with field

size  times the size of field of ECC for

 ≺ [2][3]. A hyperelliptic curve has genus

 ≥  . A hyperelliptic curve of genus    is

same as an elliptic curve. HyperEllipticCurve

Cryptosystem (HECC) was proposed by N.

Koblitz[4].

In the environments with limited prosessing

power, memory and band width. HECC offers

the same of levels of security with much

shorter bit-lengths than RSA or ECC. For ex-

ample, such as ECC, if an 160 bit security is

desired, then the underlying field should have

oder approximately  for   

respectively.

Thus hyperelliptic curves are allow for op-

erand bit-lengths ∼  bit.

These cryptosystems are realized in im-

bedded processors with limited resource (moibile

phone, smart phone, PDA,smart card ect.) and

channels with limited bandwith under con-

strained environments. In constrained environ-

ments, inversions are extremely critical prob-

lems which need more space storage and run-

ning times. An example are smart cards, as

usually multiplications are optimized there,

whereas inversion sare very slow even with

coprocessors. The proposed algirithm compute

several inversions simultaneously in HECC.

Only one previous work can found in inverse

free arithmatic on genus 2 hyperelliptic curve,

but further coordinate must be access to

SCA(Side Chennel Attacks), and more stroage

space. The proposed secure scalar multiplication

resistant to SCA.

Ⅱ. Preliminaries

2.1 Jacobian of hyperelliptic curves

Let  be a power of some prime and  be

the finite field of  elements.

A hyperelliptic curve  of genus  over 

( ≥ ) is defined by the Weierstrass equation

    , (1)

where ∈ is a polynomial of degree

at most  , ∈ is a monic polynomial

of degree   . There is no solutions

∈×  which simultaneously satisfy the

equation

    (2)

and the partial differential equations

   

and ′  ′    .

 : a finite field.

 : the algebraic closure of  .

A singular point on  is a pair

∈×  which simultaneously satisfy the

equation    

and partial differential equation

   

and ′  ′    .

A Divisor is finite formal sum of

   .

 ∑ (3)

320 한국정보전자통신기술학회논문지 제4권 제4호

Divisor : 

      , on

 with its degree defined as the integer ∑.

The Jacobian group  of the curve 

over  is an Abelian group composed of re-

duced divisors on  . Every element or reduced

divisor  in  can be uniquely expressed

by a pair of polynomials

≺ ≻with the properties

deg≺ deg≤ 

    mod
,(4)

where  ∈  .

Generally, monic polynomial of degree 

and  is a polynomial of degree    . The

element of   can be expressed as

≺  ≻ .

2.2 DLP on the Jacobian

Computing the group order of the Jacobian

is believed to be a computationally hard task

because it involves counting the number of ra-

tional points of a given hyperelliptic curve over

an extension field of a base field of degree up

to genus.

DLP on the Jacobians of hyperelliptic curves

is point multiplication by an integer  , namely

computing  for a point  on the Jacobian.

This operation is called scalar multiplication.

The most time consuming operation in HECC

is the scalar multiplication.

In practical HECC, the critical computation

that dominates the whole running time is scalar

multiplication, that is, the computation of the

repeated divisor adding

 
   

 
 

(5) for a giv-

en divisor ∈ and a positive integer

≥  , which is denoted as  .

Ⅲ. Algorithm HEC(A,D)

Simultaneous addition and doubling algorithm

was first proposed by Izu and Takagi [5],[6] for

elliptic curve scalar multiplication. The algo-

rithm  computes the addition

    and the doubling   

with simultaneous inversion.   are divi-

sors of Jacobian. The Jacobian of a hyperelliptic

curve defined over a finite field. This algorithm

is used to construct an algorithm for scalar

multiplication. A major obstacle in the im-

plementation of HECC is the problem of per-

forming efficient arithemetic in the Jacobians of

hyperelliptic curves. Recently to avoid these

field inversions several point representations for

HECC divisors have been proposed in Tanja

Lange([7],[9]). In affine coordinates HECC oper-

ations require one field inversion each. Over

prime fields, field inversion is very expensive

operation. For genus 2 HECC curve, Tanja

Lange gave explicit formulae which need

     for a group addition and

     for a group doubling in

affine coordinate system(Where  : Inversion,

 : multiplication and  : Squaring). On the

other hand, in [7] the explicit formula is devel-

oped for inversion free arithmetic in the

Jacobian, the authors introduced a further coor-

dinate called  to represent the elements of the

divisor class group and obtain explicit formulae

in projective coordinate system. In [7],

   are required for a group addi-

tion and   for a group doubling

and inverse free arithmetic.

초 타원 곡선 암호시스템에서 동시 역원 알고리즘을 가진 안전한 스칼라 곱셈 321

3.1 Simultaneous Inverses

Suppose we wish to invert to  and  .

Instead of computing two inverses we can

compute the product  and compute its

inverse.

Then we can compute inverse of  and 

by two more multiplications :     

and     . Thus inverses of two

field elements can be computed at the cost of

one inversion and three multiplications. This

trick and its elegant generalization to  ele-

ments is called Montgomery's trick[8].

It takes one inversion and   multi-

plications to compute the inverse of  elements

using the Montgomery trick.

In Montgomery trick are computed as follow.

Let   be the elements to be

inverted. Set    and for   

compute    . Then invert  and

compute


     

 
. (6)

Now, for      compute


     

 
and 

    
 

. Finally

compute 
   

   
 

.

This procedure provides 
 

  
 

using a total of   multiplications and

one inversion.

Figure 1 : Simultaneous Inverses

3.2  and 

The explicit formulae to add and double

divisors in HECC have a long process of

evolution. Let us consider the addition and dou-

bling algorithm in [9], in the most general and

frequent case. These can be divided into three

parts.

Part 1 : Some multiplications and squarings

of the underlying field elements are

carried out.

Part 2 : A field element generated in part 1

is inverted.

Part 3 : The inverse so obtained in part 2 is

used in part 3 along with some

more multiplications and squarings

of field elements. The output of

part three provides the required

divisor.

 



One inversion



One inversion

 

Figure 2 : HECADD and HECDBL [9]

Let us name the modules of these algorithms

322 한국정보전자통신기술학회논문지 제4권 제4호

as  , , (part of addition al-

gorithms) and  , , (parts of

doubling algorithms). Note that in  and

 we need to compute a total of 22 mul-

tiplications and 3 squarings([10],[11]). In 

and  we compute a total of 22 multi-

plications and 5 squarings . In each of 

and  we compute only 1 inversions. We

describe the following simultaneous add and

double algorithm. We will use the following

protocol. Suppose  ,  are divisors and we

are required to compute   and  .

By      we denote the field

element  that is to be inverted in part

 . By     , we

denote the result of the equation,

      .

(7)

Similarly, by    we denote the

field element  which is to be inverted in part

 and      denotes

the result of the equation

   . (8)

Algorithm 1 

Input :  and  .

Output :   and  .

  : Let      .

  : Let    .

  : Compute  
and  

using the method of the simultaneous in-

version algorithm

  : Let     .

  : Let     .

  : Return   .

Proposition 1 : Algorithm 1 

computes   and  with a cost of

     . Algorithm 

outputs   and  .

Proof : Computational cost of steps   ,

  ,  and   is the sum of those

of  , , , . The cost of

  ,  ,  and   is 44 mul-

tiplications and 8 squarings. The cost of step

  , by simultaneous inversion algorithm, is

   . Thus, the total cost of the algo-

rithm is      .

In simultaneous add and double algorithm,

generally  is considered computationally

equivalent to  and   is considered

equivalent to ([12],[13],[14]).

Ⅳ. Proposed Algorithm

4.1 Precomputation

In most HECC, the base divisor  is fixed

and  varies from user to user. Therefore, the

cryptographic system allows some pre-compu-

tations involving  and is capable of accumu-

lating some precomputed values as a part of

the system setup.

Let      be binary representa-

tion of an integer , i.e.,  
  

    



, with

∈ , and let  be an integer such as

 ≥ ;

we set   

 .

초 타원 곡선 암호시스템에서 동시 역원 알고리즘을 가진 안전한 스칼라 곱셈 323

 ⊕   

    ⊕

 be a divisor, for all     

∈


. we define

   

   
  

   
   

.

(9)

We generate the sequence of points

     , for all     

∈


, such as

   =  
  

 
 

  

4.2 Precomputation Phase

Step 1 : Compute    

which cost   doubling operations.

Step 2 : Consists in computing all possible

combinations 
  

  


 ,

with ∈ , and  ≤ ≺  ≤   .

The number of these combinations is

  . Thus, the cost of Step 2 is  

adding operations.

Algorithm 2 Proposed Algorithm

Input :       

and  .

Output :    .

1.(Precomputation) compute

     , for all     

∈


.

2. If  mod    then ′←  else

′←  .

3. For  from   down to  do

3.1     ,    

3.2

Return  .

4. ′← .

5. If  mod    then return   else

return ′ .
Ⅴ.Algorithm Security and

Complexity

5.1 Security against SCA SCA(Side Channel

Attack) is a persistent threat to the im-

plementations of a cryptosystem. The perfect

SCA-Resistance does not exist. However, by us-

ing appropriate countermeasures, it is possible to

make the attacker's task harder.

5.2 Security against SPA

SPA(Simple Powr Analysis) uses only a sin-

gle observed information, while the

DPA(Differential Power Analysis) uses a lot of

observed information together with the statistic

tools. SPA can detect whether the secret scalar

is even or not. To deal with this threat, The

proposed algorithm convert the scalar  to

′← .

·Computation

If  is odd :     → .

As shown before, all bit strings representing

, are different from zero. Thus, the proposed

algorithm computes the scalar multiplication

with a uniform behaviour.

The Proposed algorithm uses 

algorithm(simultaneous addition and doubling

with simultaneous inversion algorithm in HECC)

and new bit-string representation of  against

SPA. Hence, it is secure against SPA.

324 한국정보전자통신기술학회논문지 제4권 제4호

Arithmetic Algorithm
DPA-

Resistant

SPA-

 Resistant
Complexity Remark

Inverse Free

[7]

DBL_AND_

ADD
× × 


≈

DBL_AND_

ALWS_ADD × ○ 


≈

Simultaneous

Inverse

 Proposed

Algorithm
○ ○ 

Table 1 : Complexity and Security of the Other Algorithms

 ( bits)

5.3 Security against DPA

Even if a scheme is SPA-Resistant, it is

not always DPA- Resistant, because the DPA

uses not only a simple power trace but also a

statistic analysis, which has been captured by

several executions of the SPA. A scalar multi-

plication algorithm which is protected against

SCA may still be vulnerable to DPA.

In Algorithm 2 (Step 3), both input and

output for  are ordered pairs,

which are,    for    and

   for    .  outputs

the pair      . Suppose the

value of bit  has been assigned in two bits,

   and    , XOR-ing of two bits yield

a value of bit .

Then the values are assigned as follows :

    ,      if    , and

    ,    if    . It is

clear that the computation of    , and

   , is not correlated. Thus the power con-

sumption trace in each iteration is independent

of the bit .

Average power trace will not be correlated

with the measured power traces. Clearly, ,'s

value can not be predicted.

5.4 Complexity

The most expensive operation in a crypto-

system based on the DLP for the Jocobian of a

HECC is point multiplication by an integer .

The  bit binary representation of  denote

     .

A standard Double-and-Add(DBL_

AND _ADD) algorithm can computer the

scalar multiplication, but it is not secure against

the Time Attack(TA)[15].

The Double-and-always-Add(DBL

초 타원 곡선 암호시스템에서 동시 역원 알고리즘을 가진 안전한 스칼라 곱셈 325

-AND_ALWS_ADD)algorithm can resist the

TA. TA can be regarded as a class of SPA[16].

In [7], Inverse Free algorithm,

= = ,

= = ,

where    .

Total cost of DBL_AND__ADD algorithm is

 ≈  and

DBL_AND_ALWS_ADD is

 ≈ .

In proposed algorithm, 

     ,  

    .

For each bit, cost of Algorithm

 is    

≈  ,

where   

and    .

Besides there is a doubling at beginning,

which costs      ≈  .

So total cost of the computation is

  .

Although average case complexity of [7] is

better than proposed algorithm, which is not

DPA- and SPA-Resistant.

Ⅵ. Conclusion

This paper developed an efficient and secure

scalar multiplication algorithm in Genus 2

HECC. It is more secure to use formulae which

involve inversion of field elements rather than

inversion free arithmetic. An important con-

tribution of the proposed scalar multiplication al-

gorithm is a secure algorithm with simultaneous

inversion algorithm in HECC.

References

[1] L. You and J. Zeng. Fast Scalar Multiplications

on Hyperelliptic Curve Cryptosystems.

Informatica 34, pp.227–236. 2010.

[2] B. Balamohan. Accelerating the scalar

Multiplication on genus 2 HyperellipticCurve

Cryptosystems. In Cryptology ePrint Archive

Report no. 578. 2011.

[3] S. Erickson, M. J. Jacobson, N. Shang. and

S. Shen A. Stein. Efficient formulas for real

hyperelliptic curves of genus 2 in affine

representation. In C. Carlet and B. Sunar,

editors, Arithmetic of finite fields, volume

4547 of Lecture Notes in Computer Science,

pages 202–218. Springer Berlin / Heidelberg,

2010.

[4] N.Koblitz. Hyperelliptic cryptosystems. In

Ernest F.Brickell,editor, Journal of

Cryptology, No,pp.139-150. 1989.

[5] T. Izu and T. Takagi. A Fast Parallel

Elliptic Curve Multiplication Resistant

against Side Channel Attacks.

Technical Report CORR 2002-03, University

of waterloo, 2002.

[6] T. izsu, B. Moller and T. Takagi. Improved

Elliptic Curve Multiplication Methods

Resistant Against Side Channel Attacks.

Proceedings of Indocrypt 2002, LNCS

2551,pp 296-313. 2002.

[7] T. Lange. Inversion-Free Arithmetic on

Genus 2 Hyperelliptic Curves. ePrint

Archive, Report 2002/147, 2002.

[8] Pradeep Kumar Mishra and Palash Sarkar.

Application of Montgomery's Trick to

Scalar Multiplication for Elliptic and

Hyperelliptic Curves Using a Fixed Base

Point. Cryptology Research Group, Applied

Statistics Unit, Indian Statistical Institute.

326 한국정보전자통신기술학회논문지 제4권 제4호

Technical Report Number CRG/2003/16,

September, 2003.

[9] T. Lange. Efficient Arithmetic on

Hyperelliptic curves. PhD thesis, Universit

 t Gesamthochschule Essen, 2001.

[10] T. Lange and M. Stevens, " Efficient dou-

bling on genus 2 curves over binary fields"

Selected Areas in Cryptography-SAC 2004,

Springer Verlag, 2004.

[11] T. Lange. Formulae for arithmetic on genus

2 hyperelliptic curves, J. AAECC-Applicable

Algebra in Engineering, communication and

Computing, vol.15, no.5, pp.295-328, 2005.

[12] A. J. Menezes, P. C. van Oorschot and S.

A. Vanstone Handbook of Applied

Cryptography. CRC Press, 1997.

[13] K. Okeya and K. Sakurai. Efficient Elliptic

Curve Cryptosystems from a Scalar

Multiplication Algorithm with Recovery of

the y-coordinate on a Montgomery from

Elliptic Curve In CHES 2001, LNCS

2162,pp 126-141, Springer-Verlag 2001.

[14] M. Katagi, I. Kitamura, T. Akishita, and

T. Takagi ''Novel efficient implementations

of hyperelliptic curve cryptosystems using

degenerate divisors'' WISA 2004, LNCS3325,

pp. 347-361, Springer-Verlag, 2005.

[15] P.Kocher. Timing attacks on Implementations

of Diffie-Hellman, RSA,DSS and Other

System, CRYPTO'96,LNCS 1109, pp.104-113,

Springer-Velag, 1996.

[16] Mustapha Hedabou , Pierre Pinel , Lucien

Beneteau, A comb method to render ECC

resistant against Side Channel Attacks In

Cryptology ePrint Archive, Report no 342.

2002.

저자약력

박 택 진(Taek-Jin Park)

2005 KAIST/성균관대학교

전기전자 컴퓨터공학

과 박사

1987.1~1993.2 한국통신 기술

과장

1993.3~ 현재 강릉영동대학교

의료전자과 부교수

<관심분야> 정보보호 및 암호, 암호 알고리즘,

초타원곡선 암호, 해쉬 함수등

