• Title/Summary/Keyword: multiple-input multiple-output (MIMO) systems

Search Result 406, Processing Time 0.036 seconds

A Subband Adaptive Blind Equalization Algorithm for FIR MIMO Systems (FIR MIMO 시스템을 위한 부밴드 적응 블라인드 등화 알고리즘)

  • Sohn, Sang-Wook;Lim, Young-Bin;Choi, Hun;Bae, Hyeon-Deok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.476-483
    • /
    • 2010
  • If the data are pre-whitened, then gradient adaptive algorithms which are simpler than higher order statistics algorithms can be used in adaptive blind signal estimation. In this paper, we propose a blind subband affine projection algorithm for multiple-input multiple-output adaptive equalization in the blind environments. All of the adaptive filters in subband affine projection equalization are decomposed to polyphase components, and the coefficients of the decomposed adaptive sub-filters are updated by defining the multiple cost functions. An infinite impulse response filter bank is designed for the data pre-whitening. Pre-whitening procedure through subband filtering can speed up the convergence rate of the algorithm without additional computation. Simulation results are presented showing the proposed algorithm's convergence rate, blind equalization and blind signal separation performances.

Study on MIMO Scheme in ATSC 3.0 Systems (ATSC 3.0 시스템의 MIMO 방식에 대한 연구)

  • Lee, Woonhyun;Kim, Jeongchang;Park, Sung Ik;Kim, Heung Mook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.49-51
    • /
    • 2017
  • 본 논문에서는 ATSC 3.0 시스템의 2x2 MIMO (multiple input multiple output) 방식을 적용한 송수신기 구조에 대해서 살펴본다. ATSC 3.0 시스템의 MIMO 에서 적용된 프리코더 (precoder)는 스트림 결합기(stream combining), IQ 편파 인터리빙 (I/Q polarization interleaving), 위상 홉핑부 (phase hopping)로 구성된다. 또한, ATSC 3.0 의 2x2 MIMO 방식을 사용함으로써 공간 다중화 (spatial multiplexing) 이득과 공간 다이버시티 (spatial diversity) 이득을 얻을 수 있다.

  • PDF

Space-Time Block Coding Techniques for MIMO 2×2 System using Walsh-Hadamard Codes

  • Djemamar, Younes;Ibnyaich, Saida;Zeroual, Abdelouhab
    • Journal of information and communication convergence engineering
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Herein, a new space-time block coding technique is proposed for a MIMO 2 × 2 multiple-input multiple output (MIMO) system to minimize the bit error rate (BER) in Rayleigh fading channels with reduced decoding complexity using ZF and MMSE linear detection techniques. The main objective is to improve the service quality of wireless communication systems and optimize the number of antennas used in base stations and terminals. The idea is to exploit the correlation product technique between both information symbols to transmit per space-time block code and their own orthogonal Walsh-Hadamard sequences to ensure orthogonality between both symbol vectors and create a full-rate orthogonal STBC code. Using 16 quadrature amplitude modulation and the quasi-static Rayleigh channel model in the MATLAB environment, the simulation results show that the proposed space-time block code performs better than the Alamouti code in terms of BER performance in the 2 × 2 MIMO system for both cases of linear decoding ZF and MMSE.

A Study on LMMSE Receiver for Single Stream HSDPA MIMO Systems using Precoding Weights (Single Stream HSDPA MIMO 시스템에서 Precoding Weight 적용에 따른 LMMSE 수신기 성능 고찰)

  • Joo, Jung Suk
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.3-8
    • /
    • 2013
  • In CDMA-based systems, recently, researches on chip-level equalization have been studied in order to improve receiving performance when supporting high-rate data services. In this paper, we consider a chip-level LMMSE (linear minimum mean-squared error) receiver for D-TxAA (dual stream transmit antenna array) based single stream HSDPA MIMO systems using precoding weights. First, we will derive precoding weights for maximizing the total instantaneous received power. We will also analyze the effects of both transmit delay of precoding weights and mobile velocity on chip-level LMMSE receivers, which is verified through computer simulations in various mobile channel environments.

Interpolation-based Precoding Approximation Algorithm for Low Complexity in Multiuser MIMO-OFDM Systems (다중 사용자 MIMO-OFDM 시스템에서 계산양 감소를 위한 선형 보간법 기반 프리코딩 근사화 기법)

  • Lim, Dong-Ho;Kim, Bong-Seok;Choi, Kwon-Hue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11A
    • /
    • pp.1027-1037
    • /
    • 2010
  • In this paper, we propose the linear interpolation-based BD (Block Diagonalization) precoding approximation algorithm for low complexity in downlink multiuser MIMO-OFDM (Multiple-input Multiple-output Orthogonal Frequency Division Multiplexing) systems. In the case of applying the general BD precoding algorithm to multiuser MIMO-OFDM systems, the computational complexity increases in proportional to the number of subcarriers. The proposed interpolation-based BD precoding approximation algorithm can be achieved similar SER performance with general BD algorithm and can decrease the computational complexity. It is proved that proposed algorithm can achieve the significantly decreased computational complexity by computer simulation.

Sequential Loop Closing Identification of Hammerstein Models for Multiple-Input Multiple-Output Processes (다변수 Hammerstein 공정의 순차 확인법)

  • Park Ho Cheol;Koo Doe Gyoon;Lee Moon Yong;Lee Jietae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1280-1286
    • /
    • 2004
  • A lot of industrial chemical processes contain certain input nonlinearities even though they are controlled by several linear controllers. Here we investigate a sequential loop closing identification method for MIMO Hammerstein nonlinear processes with diagonal nonlinearities. The proposed method separates the identification of the nonlinear static function from that of the linear subsystem by using a relay feedback test and a triangular type signal test. From 2 n activations for n n MIMO nonlinear processes, we sequentially identify the whole range of the nonlinear static function as well as the transfer function matrix of the linear subsystem.

ML Symbol Detection for MIMO Systems in the Presence of Channel Estimation Errors

  • Yoo, Namsik;Back, Jong-Hyen;Choi, Hyeon-Yeong;Lee, Kyungchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5305-5321
    • /
    • 2016
  • In wireless communication, the multiple-input multiple-output (MIMO) system is a well-known approach to improve the reliability as well as the data rate. In MIMO systems, channel state information (CSI) is typically required at the receiver to detect transmitted signals; however, in practical systems, the CSI is imperfect and contains errors, which affect the overall system performance. In this paper, we propose a novel maximum likelihood (ML) scheme for MIMO systems that is robust to the CSI errors. We apply an optimization method to estimate an instantaneous covariance matrix of the CSI errors in order to improve the detection performance. Furthermore, we propose the employment of the list sphere decoding (LSD) scheme to reduce the computational complexity, which is capable of efficiently finding a reduced set of the candidate symbol vectors for the computation of the covariance matrix of the CSI errors. An iterative detection scheme is also proposed to further improve the detection performance.

Distributed MIMO Systems Based on Quantize-Map-and-Forward (QMF) Relaying (양자화 전송 중계 기반 분산 다중 안테나 통신 시스템)

  • Hong, Bi;Choi, Wan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.7
    • /
    • pp.404-412
    • /
    • 2014
  • Exploiting multiple antennas at mobile devices is difficult due to limited size and power. In this paper, a distributed MIMO protocol achieving the capacity of conventinal MIMO systems is proposed and analyzed. For exploiting distributed MIMO features, Quantize-Map-and-Forward (QMF) scheme shows improved performance than Amplify-and-Forward (AF) scheme. Also, the protocol based on multiple access channel (MAC) is proposed to improve the multiplexing gain. We showed that sufficient condition of the number of slave nodes to achieve the gain of a MAC based protocol. Because the base station can support multiple clusters operating in distributed MIMO, the total cellular capacity can be extremely enhanced in proportional to the number of clusters.

Improved Design Criterion for Space-Frequency Trellis Codes over MIMO-OFDM Systems

  • Liu, Shou-Yin;Chong, Jong-Wha
    • ETRI Journal
    • /
    • v.26 no.6
    • /
    • pp.622-634
    • /
    • 2004
  • In this paper, we discuss the design problem and the robustness of space-frequency trellis codes (SFTCs) for multiple input multiple output, orthogonal frequency division multiplexing (MIMO-OFDM) systems. We find that the channel constructed by the consecutive subcarriers of an OFDM block is a correlated fading channel with the regular correlation function of the number and time delay of the multipaths. By introducing the first-order auto-regressive model, we decompose the correlated fading channel into two independent components: a slow fading channel and a fast fading channel. Therefore, the design problem of SFTCs is converted into the joint design in both slow fading and fast fading channels. We present an improved design criterion for SFTCs. We also show that the SFTCs designed according to our criterion are robust against the multipath time delays. Simulation results are provided to confirm our theoretic analysis.

  • PDF

Computationally Efficient Lattice Reduction Aided Detection for MIMO-OFDM Systems under Correlated Fading Channels

  • Liu, Wei;Choi, Kwonhue;Liu, Huaping
    • ETRI Journal
    • /
    • v.34 no.4
    • /
    • pp.503-510
    • /
    • 2012
  • We analyze the relationship between channel coherence bandwidth and two complexity-reduced lattice reduction aided detection (LRAD) algorithms for multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems in correlated fading channels. In both the adaptive LR algorithm and the fixed interval LR algorithm, we exploit the inherent feature of unimodular transformation matrix P that remains the same for the adjacent highly correlated subcarriers. Complexity simulations demonstrate that the adaptive LR algorithm could eliminate up to approximately 90 percent of the multiplications and 95 percent of the divisions of the brute-force LR algorithm with large coherence bandwidth. The results also show that the adaptive algorithm with both optimum and globally suboptimum initial interval settings could significantly reduce the LR complexity, compared with the brute-force LR and fixed interval LR algorithms, while maintaining the system performance.