• Title/Summary/Keyword: multiple scales

Search Result 436, Processing Time 0.026 seconds

Nonlinear forced vibration of sandwich plate with considering FG core and CNTs reinforced nano-composite face sheets

  • Rostami, Rasoul;Rahaghi, Mohsen Irani;Mohammadimehr, Mehdi
    • Smart Structures and Systems
    • /
    • v.26 no.2
    • /
    • pp.185-193
    • /
    • 2020
  • Nonlinear vibration of sandwich plate with functionally graded material (FGM) core and carbon nano tubes reinforced (CNTs) nano-composite layers by considering temperature-dependent material properties are studied in this paper. Base on Classical plate theory (CPT), the governing partial differential equations of motion for sandwich plate are derived using Hamilton principle. The Galerkin procedure and multiple scales perturbation method are used to find relation between nonlinear frequency and amplitude of vibration response. The dynamic responses of the sandwich plate are also investigated in both time and frequency domains. Then, the effects of nonlinearity, excitation, power law index of FG core, volume fraction of carbon nanotube, the function of material variations of FG core, temperature changes, scale transformation parameter and damping factor on the frequency responses are investigated.

ANTI-PERIODIC SOLUTIONS FOR BAM NEURAL NETWORKS WITH MULTIPLE DELAYS ON TIME SCALES

  • Shu, Jiangye;Li, Yongkun
    • Journal of applied mathematics & informatics
    • /
    • v.29 no.1_2
    • /
    • pp.279-292
    • /
    • 2011
  • In this paper, we consider anti-periodic solutions of the following BAM neural networks with multiple delays on time scales: $$\{{x^\Delta_i(t)=-a_i(t)e_i(x_i(t))+{\sum\limits^m_{j=1}}c_{ji}(t)f_j(y_j(t-{\tau}_{ji}))+I_i(t),\atop y^\Delta_j(t)=-b_j(t)h_j(y_j(t))+{\sum\limits^n_{i=1}}d_{ij}(t)g_i(x_i(t-{\delta}_{ij}))+J_j(t),}\$$ where i = 1, 2, ..., n,j = 1, 2, ..., m. Using some analysis skills and Lyapunov method, some sufficient conditions on the existence and exponential stability of the anti-periodic solution to the above system are established.

Steady-state Vibration Responses of a Beam with a Nonlinear Boundary Condition (비선형 경계조건을 가진 보의 정상상태 진동응답)

  • Lee, Won-Kyoung;Yeo, Myeong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.2
    • /
    • pp.337-345
    • /
    • 1997
  • An analysis is presented for the response of a beam constrained by a nonlinear spring to a harmonic excitation. The system is governed by a linear partial differential equation with a nonlinear boundary condition. The method of multiple scales is used to reduce the nonlinear boundary value problem to a system of autonomous ordinary differential equations of the amplitudes and phases. The case of the third-order subharmonic resonance is considered in this study. The autonomous system is used to determine the steady-state responses and their stability.

Multiple Scale Processes in Microstructural Evolution: Case Study of Self-Reinforced β-Si3N4

  • Becher, Paul F.
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.6
    • /
    • pp.575-580
    • /
    • 2016
  • Microstructural design of ceramics has generally focused on information gathered at the micro- and macro-scales and related this to how specific properties could be improved. Ceramic processing serves as the key to optimizes the final microstructure. However, the advent of nano-scale microstructures and highly advanced characterization tools are forcing us to develop new knowledge of what is occurring not just at the micro-scale but also at the atomic level. Thus we are now beginning to be able to address how microstructure is influenced by events at the atomic scale using atomic scale images and data. Theoreticians have joined us in interpreting the mechanisms involved in the "microstructural" evolution at multiple scales and how this can be used to enhance specific properties of ceramics. The focus here is on delving into the various layers the "microstructure" in order understand how atomic-scale events influence the structure and properties of ceramics.

Active Nonlinear Vibration Absorber for a Nonlinear System with a Time Delay Acceleration Feedback under the Internal Resonance, Subharmonic, Superharmonic and Principal Parametric Resonance Conditions Simultaneously

  • Mohanty, S;Dwivedy, SK
    • Journal of Aerospace System Engineering
    • /
    • v.13 no.5
    • /
    • pp.9-15
    • /
    • 2019
  • In this paper, dynamic analysis of a nonlinear active vibration absorber is conducted with a time delay acceleration feedback to suppress the vibration of a nonlinear single degree of freedom primary system. The primary system consisting of linear and nonlinear cubic springs, mass, and damper is subjected to the multi-harmonic hard excitation with a parametric excitation. It is proposed to reduce the vibration of the primary system and the absorber by using a lead zirconate titanate (PZT) stack actuator in series with a spring in the absorber which configures as an active vibration absorber. The method of multiple scales (MMS) is used to obtain the approximate solution of the system under the internal resonance, subharmonic, superharmonic, and principal parametric resonance conditions simultaneously. Frequency and time responses of the system are investigated considering a delay in the feedback for the various parameters of the absorber configuration and controlling force.

Combination resonance analysis of FG porous cylindrical shell under two-term excitation

  • Ahmadi, Habib;Foroutan, Kamran
    • Steel and Composite Structures
    • /
    • v.32 no.2
    • /
    • pp.253-264
    • /
    • 2019
  • This paper presents the combination resonances of FG porous (FGP) cylindrical shell under two-term excitation. The effect of structural damping on the system response is also considered. With regard to classical plate theory of shells, von-$K{\acute{a}}rm{\acute{a}}n$ equation and Hook law, the relations of stress-strain is derived for shell. According to the Galerkin method, the discretized motion equation is obtained. The combination resonances are obtained by using the method of multiple scales. Four types of FGP distributions consist of uniform porosity, non-symmetric porosity soft, non-symmetric porosity stiff and symmetric porosity distribution are considered. The influence of various porosity distributions, porosity coefficients of cylindrical shell and amplitude excitations on the combination resonances for FGP cylindrical shells is investigated.

Large deformations of a flexural frame under nonlinear P-delta effects

  • Afshar, Dana;Afshar, Majid Amin
    • Earthquakes and Structures
    • /
    • v.22 no.5
    • /
    • pp.517-526
    • /
    • 2022
  • In this paper, nonlinear P-delta effects are studied on the seismic performance, and the modal responses of a flexural frame, considering large deformations. Using multiple scales method, the nonlinear differential equations of motion are estimated, and the nonlinear interactions between the frame's degrees of freedom are outcropped. The results of time and frequency domain analyzes of a dynamic model are examined under internal resonance cases, and the linear and nonlinear responses are investigated in each modal cases. Also, changing the modal responses with respect to the amplitude and frequency of the harmonic forces is evaluated. It is shown that the dominant absorption of energy is in the first natural frequency of the frame, in the case of earthquake excitation, and when a harmonic force is applied to the frame, the peaks of the frequency domain responses depending on the frequency of harmonic force are in the first, and second or third natural frequency of the structure.

Water Wetting Observation on a Superhydrophobic Hairy Plant Leaf Using Environmental Scanning Electron Microscopy

  • Yoon, Sun Mi;Ko, Tae-Jun;Oh, Kyu Hwan;Nahm, Sahn;Moon, Myoung-Woon
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.201-205
    • /
    • 2016
  • Functional surfaces in nature have been continuously observed because of their ability to adapt to the environment. To this end, methods such as scanning electron microscopy (SEM) have been widely used, and their wetting functions have been characterized via environmental SEM. We investigated the superhydrophobic hairy leaves of Pelargonium tomentosum, i.e., peppermint-scented geranium. Their surface features and wettability were studied at multiple-scales, i.e., macro-, micro-, and sub-micro scales. The surfaces of the investigated leaves showed superhydrophobicity at the macro-, and micro-scales. The wetting or condensing behavior was studied for molecule-size water vapors, which easily adhered to the hairy surface owing to their significantly lower size in comparison to that of the surface.

Neighborhood Correlation Image Analysis for Change Detection Using Different Spatial Resolution Imagery

  • Im, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.337-350
    • /
    • 2006
  • The characteristics of neighborhood correlation images for change detection were explored at different spatial resolution scales. Bi-temporal QuickBird datasets of Las Vegas, NV were used for the high spatial resolution image analysis, while bi-temporal Landsat $TM/ETM^{+}$ datasets of Suwon, South Korea were used for the mid spatial resolution analysis. The neighborhood correlation images consisting of three variables (correlation, slope, and intercept) were evaluated and compared between the two scales for change detection. The neighborhood correlation images created using the Landsat datasets resulted in somewhat different patterns from those using the QuickBird high spatial resolution imagery due to several reasons such as the impact of mixed pixels. Then, automated binary change detection was also performed using the single and multiple neighborhood correlation image variables for both spatial resolution image scales.