DOI QR코드

DOI QR Code

Multiple Scale Processes in Microstructural Evolution: Case Study of Self-Reinforced β-Si3N4

  • Becher, Paul F. (Corporate Fellow Emeritus, Materials Science and Technology Division, Oak Ridge National Laboratory)
  • Received : 2016.08.09
  • Accepted : 2016.10.17
  • Published : 2016.11.30

Abstract

Microstructural design of ceramics has generally focused on information gathered at the micro- and macro-scales and related this to how specific properties could be improved. Ceramic processing serves as the key to optimizes the final microstructure. However, the advent of nano-scale microstructures and highly advanced characterization tools are forcing us to develop new knowledge of what is occurring not just at the micro-scale but also at the atomic level. Thus we are now beginning to be able to address how microstructure is influenced by events at the atomic scale using atomic scale images and data. Theoreticians have joined us in interpreting the mechanisms involved in the "microstructural" evolution at multiple scales and how this can be used to enhance specific properties of ceramics. The focus here is on delving into the various layers the "microstructure" in order understand how atomic-scale events influence the structure and properties of ceramics.

Keywords

References

  1. G. Petzow and M. Herrmann, "Silicon Nitride Ceramics," pp. 50-166 in High Performance Non-Oxide Ceramics II, Structure and Bonding, Vol. 102, Springer-Verlag, Berlin, 2002.
  2. M. J. Hoffmann and G. Petzow, Tailoring of Mechanical Properties of $Si_3N_4$ Ceramics; Kluwer Academic Publishers, Dordrecht, 1994.
  3. T. Ohji, "Microstructural Control and Mechanical Properties," pp. 657-73 in Handbook of Advanced Ceramics, 2nd Edition, Ed. by S. Somiya, Academic Press, 2013.
  4. Grain Boundary Engineering in Ceramics, Ceramic Transaction, Vol. 118, T. Sakuma, L. M. Sheppard and Y. Ikuhara (eds.) American Ceramic Society, Westerville, OH (2000).
  5. S. Funfschilling, T. Fett, M.J. Hoffmann, R. Oberacker, J. Wippler, H. Ozcoban, G. A. Schneider, P. F. Becher, and J. J. Kruzic, "Mechanisms of Toughening in Silicon Nitrides: The Role of Crack Bridging and Microstructure," Acta Mater., 59[10] 3978-89 (2011). https://doi.org/10.1016/j.actamat.2011.03.023
  6. P. F. Becher, "Microstructural Design of Toughened Ceramics," J. Am. Ceram. Soc., 74 255-69 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06872.x
  7. J. J. Kruzic, R. L. Satet, M. J. Hoffmann, R. M. Cannon, and R. O. Ritchie, 'The Utility of R-Curves for Understanding Fracture Toughness-Strength Relations in Bridging Ceramics,'' J. Am. Ceram. Soc., 91 1986-94 (2008). https://doi.org/10.1111/j.1551-2916.2008.02380.x
  8. P. F. Becher, additional unpublished data.
  9. S. M. Wiederhorn and M. K. Ferber, "Silicon Nitride for Gas Turbines," Curr. Opin. Solid State Mater. Sci., 5 [4] 311-16 (2001). https://doi.org/10.1016/S1359-0286(00)00032-2
  10. J. S. Haggerty and A. Lightfoot, "Opportunities for Enhancing the Thermal Conductivity of SiC and $Si_3N_4$ Ceramics Through Improved Processing," Ceram. Eng. Sci. Proc., 16 [4] 475-87 (1995). https://doi.org/10.1002/9780470314715.ch52
  11. (a) M. Kitayama, K. Hirao, A. Tsuge, K. Watari, M. Toriyama, and S. Kanzaki, "Thermal Conductivity of $\beta-Si_3N_4$: II, Effect of Lattice Oxygen," J. Am. Ceram. Soc., 83 [8] 1985-92 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01501.x
  12. (b) M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, "Oxygen Content in $\beta-Si_3N_4$ Crystal Lattice," J. Am. Ceram. Soc., 82 [11] 3263-65 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb02238.x
  13. K. Watari, B. C. Li, L. Pottier, D. Fournier, and M. Toriyama, "Thermal Conductivity of Beta-$Si_3N_4$ Single Crystal," Key Eng. Mater., 181-1 239-42 (2000).
  14. A. M. Kramer, M. J. Hoffmann, and G. Petzow, ''Grain Growth Studies of Silicon Nitride Dispersed in an Oxynitride Glass,'' J. Am. Ceram. Soc., 76 [11] 2778-84 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb04015.x
  15. (b) M. Kramer, M. J. Hoffmann, and G. Petzow, ''Grain Growth Kinetics of $Si_3N_4$ During a/b-Transformation,'' Acta Metall., 41 [10] 2939-47 (1993). https://doi.org/10.1016/0956-7151(93)90108-5
  16. M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, ''Modeling and Simulation of Grain Growth in $Si_3N_4$: The ${\alpha}−{\beta}$ Transformation,'' Acta Mater., 46 [18] 6551-57 (1998). https://doi.org/10.1016/S1359-6454(98)00291-2
  17. P. F. Becher, G. S. Painter, N. Shibata, S. B. Waters, and H.-T. Lin, ''Effects of Rare Earth (RE) Intergranular Adsorption on the Phase Transformation, Microstructure Evolution and Mechanical Properties in Silicon Nitride with $RE_2O_3$+MgO Additives: RE: La, Gd, Lu,'' J. Am. Ceram. Soc., 91 [7] 2328-36 (2008). https://doi.org/10.1111/j.1551-2916.2008.02448.x
  18. A. M. Kitayama, K. Hirao, M. Toriyama, and S. Kanzaki, ''Control of b-Si3N4 Crystal Morphology and Its Mechanism (Part II) Effect of Lanthanide Additives,'' J. Ceram. Soc. Jpn., 107 [11] 995-1000 (1999). https://doi.org/10.2109/jcersj.107.995
  19. R. L. Satet and M. J. Hoffmann, ''Grain Growth Anisotropy of ${\beta}$-Silicon Nitride in Rare-Earth Doped Oxynitride Glasses,'' J. Eur. Ceram. Soc., 24 3437-45 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.10.034
  20. P. F. Becher, G. S. Painter, N. Shibata, R. L. Satet, M. J. Hoffmann and S. J. Pennycook, "Influenced of Additives on Anisotropic Grain Growth in Silicon Nitride Ceramics," Mater. Sci. Eng. A, 422 85-91 (2006). https://doi.org/10.1016/j.msea.2006.01.006
  21. M. J. Hoffmann, H. Gu, and R. M. Cannon, ''Influence of the Interfacial Properties on the Development and Properties of Silicon Nitride Ceramics''; pp. 65-74 in MRS Symposium Proceedings, Vol. 585-Interfacial Engineering for Optimized Properties II, C. B. Carter, E. L. Hall, C. L. Briant, and S. Nutt (editors).MRS, Warrendale, PA, 2000.
  22. C. -M. Wang, X. Pan, M. J. Hoffmann, R. M. Cannon and M. Ruhle, "Grain Boundary Films in Rare-Earth-Glass-Bonded-Based Silicon Nitride," J. Am. Ceram. Soc., 79[3] 788-92 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb07946.x
  23. N. Shibata, S. J. Pennycook, T. R. Gosnell, G. S. Painter, W. A. Shelton, and P. F. Becher, "Observation of Rare Earth Segregation in Silicon Nitride Ceramics at Sub-Nanometer Dimensions," Nature, 428730-33 (2004). https://doi.org/10.1038/nature02410
  24. G. B. Winkelman, C. Dwyer, T.S. Hudson, D. Nguygen-Manh, M. Doblinger, R. L. Satet, M. J. Hoffmann and D. J. H. Cockayne, "Three Dimensional Organization of Rare-Earth Atoms at Grain Boundaries in Silicon Nitride," Appl. Phys. Lett., 87 061911 1-3 (2005).
  25. N. Shibata, G. S. Painter, R. L. Satet, M. J. Hoffmann, S. J. Pennycook, and P. F. Becher, "Rare Earth Adsorption at Intergranular Interfaces in Silicon Nitride Ceramics: Sub-Nanometer Observations and Theory," Phys. Rev. B, 72 140101 R-1 to -4 (2005). https://doi.org/10.1103/PhysRevB.72.140101
  26. C. Dwyer, A. Ziegler, N. Shibata, G. B. Winkelman, R. L. Satet, M. J. Hoffmann, M. K. Cinibulk, P. F. Becher, G. S. Painter, N. D. Browning, D. J. H. Cockayne, P. O. Ritchie, and S. J. Pennycook, "Interfacial Structure in Silicon Nitride Sintered with Lanthanide Oxides," J. Mater. Sci., 41[14] 4405-12 (2006). https://doi.org/10.1007/s10853-006-0152-2
  27. N. Shibata, G. S. Painter, P. F. Becher, and S. J. Pennycook, "Atomic Ordering at an Amorphous /Crystal Interface," Appl. Phys. Lttrs, 89 051908-1 to -3 (2006). https://doi.org/10.1063/1.2245212
  28. K. van Benthem, G. S. Painter, F. W. Averill, S. J. Pennycook, and P. F. Becher, "Experimental Probe of Adsorbate Binding Energies at Internal Crystalline/Amorphous Interfaces," Appl. Phys. Lett., 92 163110-1 to -3 (2008). https://doi.org/10.1063/1.2917566
  29. G. S. Painter, P. F. Becher, W. A. Shelton, R. L. Satet and M. J. Hoffmann, "Differential Binding Model: Effects of Rare-Earths on ${\beta}-Si_3N_4$ Grain Growth and Microstructure," Phys. Rev. B, 70 144108 (2004). https://doi.org/10.1103/PhysRevB.70.144108
  30. G. S. Painter, F. W. Averill, P. F. Becher, N. Shibata, K. van Benthem, and S. J. Pennycook, "First Principles Study of Rare Earth Adsorption at ${\beta}-Si_3N_4$ Interfaces," Phys. Rev. B, 78 214206-1 to -9 (2008). https://doi.org/10.1103/PhysRevB.78.214206
  31. G. S. Painter and P. F. Becher, Microstructural Design of Ceramics: Theory and Experiment. pp. 233-95 in Ceramic Science and Technology, Vol. 1, Structures, R. Riedel and IW. Chen (eds.) Wiley-VCHf Verlag Gmbh & Co., 2008.
  32. Y. Jiang, Y. Ma, and S. H. Garofalini, "Role of Oxygen on the Interfacial Adsorption Sites of Lu and La in ${\beta}-Si_3N_4$," Acta Mater., 66 284-92 (2014). https://doi.org/10.1016/j.actamat.2013.11.015
  33. Y. Wei, H. Wang, X. Lu, J. Wen, M. Niu, X. Fana, and S. Jia, "Effects of Rare Earth Adsorption on Electronic Structure and Optical Properties in ${\beta}-Si_3N_4$ Ceramics from First Principles," RSC Adv., 4 53570-74 (2014). https://doi.org/10.1039/C4RA04649H

Cited by

  1. Compositional effects on the crosslink density of Ca-(Mg)-(Y)-Si-Al-oxyfluoronitride glasses vol.101, pp.1, 2017, https://doi.org/10.1111/jace.15210