KSII Transactions on Internet and Information Systems (TIIS)
/
제17권6호
/
pp.1620-1634
/
2023
This paper studies the task of embedding nodes with multiple graphs representing multiple information channels, which is useful in a large volume of network clustering tasks. By learning a node using multiple graphs, various characteristics of the node can be represented and embedded stably. Existing studies using multi-channel networks have been conducted by integrating heterogeneous graphs or limiting common nodes appearing in multiple graphs to have similar embeddings. Although these methods effectively represent nodes, it also has limitations by assuming that all networks provide the same amount of information. This paper proposes a method to overcome these limitations; The proposed method gives different weights according to the source graph when embedding nodes; the characteristics of the graph with more important information can be reflected more in the node. To this end, a novel method incorporating a multi-channel gate layer is proposed to weigh more important channels and ignore unnecessary data to embed a node with multiple graphs. Empirical experiments demonstrate the effectiveness of the proposed multi-channel-based embedding methods.
Even though algorithms for watermark embedding and extraction step are important issue for digital watermarking, watermark selection and post-processing can give us an opportunity to improve our algorithms and achieve higher performance. For this reason, we summarized the possibilities of improvements for digital watermarking by referring to the watermark merging techniques rather than embedding and extraction algorithms in this paper. We chose Cox's function as main embedding and extraction algorithm, and multiple barcode watermarks as a watermark. Each bit of the multiple copies of barcode watermark was embedded into a gray-scale image with Cox's embedding function. After extracting the numbers of watermark, we applied the watermark merging techniques; including the simple merging, N-step iterated merging, recover merging and combination of iterated-recover merging. Main consequence of our paper was the fact of finding out how multiple barcode watermarks and merging techniques can give us opportunities to improve the performance of algorithm.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권9호
/
pp.4144-4165
/
2018
Software-defined networking (SDN) has emerged as a promising technology for network programmability and experiments. In this work, we focus on virtual network embedding in multiple controllers SDN network. In SDN virtualization environment, virtual SDN networks (vSDNs) operate on the shared substrate network and managed by their each controller, the placement and load of controllers affect vSDN embedding process. We consider controller placement, vSDN embedding, controller adjustment as a joint problem, together considering different quality of service (QoS) requirement for users, formulate the problem into mathematical models to minimize the average time delay of control paths, the load imbalance degree of controllers and embedding cost. We propose a heuristic method which places controllers and partitions control domains according to substrate SDN network, embeds different QoS constraint vSDN requests by corresponding algorithms, and migrates switches between control domains to realize load balance of controllers. The simulation results show that the proposed method can satisfy different QoS requirement of tenants, keep load balance between controllers, and work well in the acceptance ratio and revenue to cost ratio for vSDN embedding.
This study introduces CR-M-SpanBERT, a coreference resolution (CR) model that utilizes multiple embedding-based span bidirectional encoder representations from transformers, for antecedent recognition in natural language (NL) text. Information extraction studies aimed to extract knowledge from NL text autonomously and cost-effectively. However, the extracted information may not represent knowledge accurately owing to the presence of ambiguous entities. Therefore, we propose a CR model that identifies mentions referring to the same entity in NL text. In the case of CR, it is necessary to understand both the syntax and semantics of the NL text simultaneously. Therefore, multiple embeddings are generated for CR, which can include syntactic and semantic information for each word. We evaluate the effectiveness of CR-M-SpanBERT by comparing it to a model that uses SpanBERT as the language model in CR studies. The results demonstrate that our proposed deep neural network model achieves high-recognition accuracy for extracting antecedents from NL text. Additionally, it requires fewer epochs to achieve an average F1 accuracy greater than 75% compared with the conventional SpanBERT approach.
Liao, Jianxin;Feng, Min;Li, Tonghong;Wang, Jingyu;Qing, Sude
KSII Transactions on Internet and Information Systems (TIIS)
/
제8권1호
/
pp.145-164
/
2014
Network virtualization provides a promising tool to allow multiple heterogeneous virtual networks to run on a shared substrate network simultaneously. A long-standing challenge in network virtualization is the Virtual Network Embedding (VNE) problem: how to embed virtual networks onto specific physical nodes and links in the substrate network effectively. Recent research presents several heuristic algorithms that only consider single topological attribute of networks, which may lead to decreased utilization of resources. In this paper, we introduce six complementary characteristics that reflect different topological attributes, and propose three topology-aware VNE algorithms by leveraging the respective advantages of different characteristics. In addition, a new KS-core decomposition algorithm based on two characteristics is devised to better disentangle the hierarchical topological structure of virtual networks. Due to the overall consideration of topological attributes of substrate and virtual networks by using multiple characteristics, our study better coordinates node and link embedding. Extensive simulations demonstrate that our proposed algorithms improve the long-term average revenue, acceptance ratio, and revenue/cost ratio compared to previous algorithms.
The present study was aimed to evaluate the influence of glutaraldehyde (GA) concentration on multiple electron microscopic (EM) immunostaining using pre-embedding peroxidase and post-embedding immunogold method. Influence of various concentrations of GA included in the fixative on immuoreactivity was assessed in the multiple immunostaining using antisera against anti-transient receptor potential vanilloid 1 (TRPV1) for peroxidase staining and anti-GABA for immunogold labeling in the rat trigeminal caudal nucleus. Anti-TRPV1 antiserum had specificity in pre-embedding peroxidase staining when tissues were fixed with fixative containing paraformaldehyde (PFA) alone. Immunoreactivity for TRPV1 was specific in tissues fixed with fixative containing 0.5% GA at both perfusion and postfixation steps, though the immunoreactivity was weaker than in tissues fixed with fixative containing PFA alone. Tissues fixed with fixative containing 0.5% GA at the perfusion and postfixation steps showed specific immunogold staining for GABA. The results of the present study indicate that GA concentration is critical for immunoreactivity to antigens such as TRPV1 and GABA. This study also suggests that the appropriate GA concentration is 0.5% for multiple immunostaining with peroxidase labeling for TRPV1 and immunogold labeling for GABA.
Text is the most widely used means of exchanging or expressing knowledge and information in the real world. Recently, researches on structuring unstructured text data for text analysis have been actively performed. One of the most representative document embedding method (i.e. doc2Vec) generates a single vector for each document using the whole corpus included in the document. This causes a limitation that the document vector is affected by not only core words but also other miscellaneous words. Additionally, the traditional document embedding algorithms map each document into only one vector. Therefore, it is not easy to represent a complex document with interdisciplinary subjects into a single vector properly by the traditional approach. In this paper, we introduce a multi-vector document embedding method to overcome these limitations of the traditional document embedding methods. After introducing the previous study on multi-vector document embedding, we visually analyze the effects of the multi-vector document embedding method. Firstly, the new method vectorizes the document using only predefined keywords instead of the entire words. Secondly, the new method decomposes various subjects included in the document and generates multiple vectors for each document. The experiments for about three thousands of academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the multi-vector based method, we ascertained that the information and knowledge in complex documents can be represented more accurately by eliminating the interference among subjects.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권2호
/
pp.522-541
/
2016
Network virtualization provides an effective way to overcome the Internet ossification problem. As one of the main challenges in network virtualization, virtual network embedding refers to mapping multiple virtual networks onto a shared substrate network. However, existing heuristic embedding algorithms evaluate the embedding potential of the nodes simply by the product of different resource attributes, which would result in an unbalanced embedding. Furthermore, ignoring the hops of substrate paths that the virtual links would be mapped onto may restrict the ability of the substrate network to accept additional virtual network requests, and lead to low utilization rate of resource. In this paper, we introduce and extend five node attributes that quantify the embedding potential of the nodes from both the local and global views, and adopt the technique for order preference by similarity ideal solution (TOPSIS) to rank the nodes, aiming at balancing different node attributes to increase the utilization rate of resource. Moreover, we propose a novel two-stage virtual network embedding algorithm, which maps the virtual nodes onto the substrate nodes according to the node ranks, and adopts a shortest path-based algorithm to map the virtual links. Simulation results show that the new algorithm significantly increases the long-term average revenue, the long-term revenue to cost ratio and the acceptance ratio.
The applicability and productivity of hydroforming process can be increased by combining pre- and post-forming processes such as the bending, piercing and embedding process. For the fabrication of automotive parts, the hollow bodies with connecting nuts are widely used to connect parts together. Hollow body with connecting nuts has been conventionally fabricated by welding nuts or screwing in autobody screws. It requires multiple steps and devices fur the welding and/or screwing Therefore in this study, hydro-embedding process that combines the hydraulic embedding of connecting element(nut) with hydroforming process is investigated. Studies on the hydro-embedding technology have been performed to optimize the shape of the connecting element by analyzing the deformed mode of the embedded tube The effects of the shape of the screw tip, screw thread and shape of thread on the connection force between the tube and the connecting element have been investigated to optimize the shape of connecting element. Finite element analysis has also been performed to provide deformation behaviors of the tube surrounding a hole produced by hydro-embedding.
텍스트 데이터에 대한 다양한 분석을 위해 최근 비정형 텍스트 데이터를 구조화하는 방안에 대한 연구가 활발하게 이루어지고 있다. doc2Vec으로 대표되는 기존 문서 임베딩 방법은 문서가 포함한 모든 단어를 사용하여 벡터를 만들기 때문에, 문서 벡터가 핵심 단어뿐 아니라 주변 단어의 영향도 함께 받는다는 한계가 있다. 또한 기존 문서 임베딩 방법은 하나의 문서가 하나의 벡터로 표현되기 때문에, 다양한 주제를 복합적으로 갖는 복합 문서를 정확하게 사상하기 어렵다는 한계를 갖는다. 본 논문에서는 기존의 문서 임베딩이 갖는 이러한 두 가지 한계를 극복하기 위해 다중 벡터 문서 임베딩 방법론을 새롭게 제안한다. 구체적으로 제안 방법론은 전체 단어가 아닌 핵심 단어만 이용하여 문서를 벡터화하고, 문서가 포함하는 다양한 주제를 분해하여 하나의 문서를 여러 벡터의 집합으로 표현한다. KISS에서 수집한 총 3,147개의 논문에 대한 실험을 통해 복합 문서를 단일 벡터로 표현하는 경우의 벡터 왜곡 현상을 확인하였으며, 복합 문서를 의미적으로 분해하여 다중 벡터로 나타내는 제안 방법론에 의해 이러한 왜곡 현상을 보정하고 각 문서를 더욱 정확하게 임베딩할 수 있음을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.