• Title/Summary/Keyword: multiple controllers

Search Result 156, Processing Time 0.027 seconds

Development of multiple channel EPD controller (다중 채널 EPD제어기의 개발)

  • 최순혁;차상엽;이종민;우광방
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1500-1503
    • /
    • 1997
  • In this paper a multiple channel EPD controller is developed which enables us to detect endpoints simultaneously in the plasma etching process operated in multiple etching chambers and its performance characteristic are investigated. for the accurate detectiion of endpoint the developed EDP controller was able to implement endpoint detectiions by integrating the existing EPD controllers with the techiques of artificial intellignet, to enhance its performance. The performance of the developed EPD controller was carried out by repeated experiments of endpoint detection in the acrual production line of semiconductor manufacturing. It's utility for endpoint detectiion was accurately evaluated in various etching process. The control capability of multiple etching chambers enhances its application compared with the existing one, and also increases the user utility os that the efficiency of operation was improved.

  • PDF

A study on proportional multiple-resonance controller for harmonic distortion compensation of single phase VSIs (단상 전압 소스 인버터의 고조파 왜곡 보상을 위한 비례 다중 공진 제어기에 관한 연구)

  • Bongwoo Kwak
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.319-326
    • /
    • 2023
  • In this paper, simulation and experimental results are presented, including the implementation of a digital controller for robust output voltage control of a single-phase voltage source inverters (VSIs) and total harmonic distortion (T.H.D.v) analysis. Typically, the VSIs uses a proportional integral (PI) controller for the current controller on the inner loop and a proportional resonant (PR) controller for the voltage controller on the outer loop to control the output voltage. However, non-linear loads still produce high-order odd harmonic distortion. Therefore, in this paper, a proportional multiple resonance (PMR) controller with a resonance controller for odd harmonic frequencies is proposed to suppress harmonic distortion. Analyze the frequency response of controllers for VSI plants and design PMR controllers. Through simulation, the total harmonic distortion characteristics of the output voltage are compared and verified when PI and PMR are used as voltage controllers. Both linear and non-linear loading conditions were considered. Finally, the effectiveness of the PMR controller was demonstrated by applying it to a 3kW VSIs prototype.

Fuzzy Inference System Based Multiple Neural Network Controllers for Position Control of Ultrasonic Motor (퍼지 추론 시스템 기반의 다중 신경회로망 제어기를 이용한 초음파 모터의 위치제어)

  • Choi, Jae-Weon;Min, Byung-Woo;Park, Un-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.4
    • /
    • pp.209-218
    • /
    • 2001
  • Ultrasonic motors are newly developed motors which are expected to be useful as actuators in many practical systems such as robot arms or manipulators because of several advantages against the electromagnetic motors. However, the precise control of the ultrasonic motor is generally difficult due to the absence of appropriate and rigorous mathematical model. Furthermore, owing to heavy nonlinearity, the position control of a pendulum system driven by the ultrasonic motor has a problem that control method using multiple neural network controllers based on a fuzzy inference system that can determine the initial position of the pendulum in the beginning of control operation. In addition, and appropriate neural network controller that has been learned to operate well at the corresponding initial position is adopted by switching schemes. The effectiveness of the proposed method was verified and evaluated from real experiments.

  • PDF

Design of a Hybrid Controller for the Three-phase Four-leg Voltage-source Inverter with Unbalanced Load

  • Doan, Van-Tuan;Kim, Ki-Young;Choi, Woojin;Kim, Dae-Wook
    • Journal of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.181-189
    • /
    • 2017
  • The three-phase four-leg voltage-source inverter topology is an interesting option for the three-phase four-wire system. With an additional leg, this topology can achieve superior performance under unbalanced and nonlinear load conditions. However, because of the low bandwidth of conventional controllers in high-power inverter applications, the system cannot guarantee a balanced output voltage under the unbalanced load condition. Most of the methods proposed to solve this problem mainly use the multiple synchronous frame method, which requires several controllers and a large amount of computation because of frame transformation. This study proposes a simple hybrid controller that combines proportional-integral (PI) and resonant controllers in the synchronous frame synchronized with the positive-sequence component of the output voltage of the three-phase four-leg inverter. The design procedure for the controller and the theoretical analysis are presented. The performance of the proposed method is verified by the experimental results and compared with that of the conventional PI controller.

Indirect Decentralized Learning Control for the Multiple Systems (복합시스템을 위한 간접분산학습제어)

  • Lee, Soo-Cheol
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1996.10a
    • /
    • pp.217-227
    • /
    • 1996
  • The new filed of learning control develops controllers that learn to improve their performance at executing a given task , based on experience performing this specific task. In a previous work[6], authors presented a theory of indirect learning control based on use of indirect adaptive control concepts employing simultaneous identification and control. This paper develops improved indirect learning control algorithms, and studies the use of such controller indecentralized systems. The original motivation of the learning control field was learning in robots doing repetitive tasks such as on an asssembly line. This paper starts with decentralized discrete time systems. and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the nominal trajectory, and using the usual robot controllers that are decentralized, treating each link as if it is independent of any coupling with other links. The resultof the paper is to show that stability of the indirect learning controllers for all subsystems when the coupling between subsystems is turned off, assures convergence to zero tracking error of the decentralized indirect learning control of the coupled system, provided that the sample tie in the digital learning controller is sufficiently short.

Multiple Simultaneous Specification Control of Antagonistic Actuation by Pneumatic Artificial Muscles (공압형 인공근육으로 구동되는 상극구동의 다중 동시 사양 제어)

  • Kang, Bong-Soo
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.34-41
    • /
    • 2011
  • This paper presents a frequency-response test performed on an antagonistic actuation system consisting of two Mckibben pneumatic artificial muscles and a pneumatic circuit. A linear model, capable of estimating the dynamic characteristics of the antagonistic system in the operating range of pneumatic artificial muscles, was optimally calculated based on frequency-response results and applied to a multiple simultaneous specification control scheme. Trajectory tracking results showed that the presented multiple simultaneous specification controller, built experimentally by three PD typed sample controllers, satisfied successfully all required control specifications; rising time, maximum overshoot, steady-state error.

Power Control Methods for Microgrid with Multiple Distributed Generators (다중 분산전원으로 구성된 마이크로그리드의 유무효전력 제어원리 연구)

  • Chung, Il-Yop;Won, Dong-Jun;Moon, Seung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.4
    • /
    • pp.582-588
    • /
    • 2008
  • Microgrids are new distribution level power networks that consist of various electronically-interlaced generators and sensitive loads. The important control object of Microgrids is to supply reliable and high-quality power even during the faults or loss of mains(islanding) cases. This paper presents power control methods to coordinate multiple distributed generators(DGs) against abnormal cases such as islanding and load power variations. Using speed-droop and voltage-droop characteristics, multiple distributed generators can share the load power based on locally measured signals without any communications between them. This paper adopts the droop controllers for multiple DG control and improved them by considering the generation speed of distribution level generators. Dynamic response of the proposed control scheme has been investigated under severe operation cases such as islanding and abrupt load changes through PSCAD/EMTDC simulations.

Output feedback $H^\infty$ controller design for linear systems with delayed state (상태지연 선형시스템에 대한 출력되먹임 $H^\infty$ 제어기 설계)

  • Jeong, Eun-Tae;Oh, Do-Chang;Park, Hong-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 1997
  • In this paper, we present an output feedback $H^\infty$controller design method and derive the sufficient condition of the bounded real lemma for linear systems with multiple delays in states. For state delayed systems, sufficient conditions for the existence $\kappa$-th order $H^\infty$controllers are given in terms of three linear matrix inequalities(LMIs). Furthermore, we show how to construct such controllers from the positive definite solutions of their LMIs and given an example to illustrate the validitiy of the proosed design procedure.

  • PDF

Fuzzy-based Path Planning for Multiple Mobile Robots in Unknown Dynamic Environment

  • Zhao, Ran;Lee, Hong-Kyu
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.918-925
    • /
    • 2017
  • This paper presents a path planning problem for multi-robot system in the environment with dynamic obstacles. In order to guide the robots move along a collision-free path efficiently and reach the goal position quickly, a navigation method based on fuzzy logic controllers has been developed by using proximity sensors. There are two kinds of fuzzy controllers developed in this work, one is used for obstacle avoidance and the other is used for orientation to the target. Both static and dynamic obstacles are included in the environment and the dynamic obstacles are defined with no type of restriction of direction and velocity. Here, the environment is unknown for all the robots and the robots should detect the surrounding information only by the sensors installed on their bodies. The simulation results show that the proposed method has a positive effectiveness for the path planning problem.

Interfacing Module Design for Real Time Processing in Distributed Programmable Devices (분산된 단위 제어기기의 실시간 처리를 위한 접속 모듈의 설계)

  • 박남수;김정호;이상범
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.30B no.9
    • /
    • pp.9-17
    • /
    • 1993
  • There are multiple controllers (PLC. LOOP Controller ) which are operating in product line and fabrication line. In those lines, it is necessary to connect various multilple controllers with integrity and coordination. The ways to connect those devices are specified by ISO network standard. In this paper, real time network is designed and implemented for factory automation at lowest possible cost that meets the small and middle size MINI-MAP specifications. Network performance is evaluated by simulation method on data link layer implemented interfacing modules has efficiency in throughput by reducing processing time. The system designed in this paper can be also applied to the field of distributed systems for real time processing.

  • PDF