DOI QR코드

DOI QR Code

A study on proportional multiple-resonance controller for harmonic distortion compensation of single phase VSIs

단상 전압 소스 인버터의 고조파 왜곡 보상을 위한 비례 다중 공진 제어기에 관한 연구

  • Bongwoo Kwak (Dept. of of Automotive Materials & Components R&D Group, Korea Institute of Industrial Technology)
  • Received : 2023.08.24
  • Accepted : 2023.09.27
  • Published : 2023.09.30

Abstract

In this paper, simulation and experimental results are presented, including the implementation of a digital controller for robust output voltage control of a single-phase voltage source inverters (VSIs) and total harmonic distortion (T.H.D.v) analysis. Typically, the VSIs uses a proportional integral (PI) controller for the current controller on the inner loop and a proportional resonant (PR) controller for the voltage controller on the outer loop to control the output voltage. However, non-linear loads still produce high-order odd harmonic distortion. Therefore, in this paper, a proportional multiple resonance (PMR) controller with a resonance controller for odd harmonic frequencies is proposed to suppress harmonic distortion. Analyze the frequency response of controllers for VSI plants and design PMR controllers. Through simulation, the total harmonic distortion characteristics of the output voltage are compared and verified when PI and PMR are used as voltage controllers. Both linear and non-linear loading conditions were considered. Finally, the effectiveness of the PMR controller was demonstrated by applying it to a 3kW VSIs prototype.

본 논문에서는 단상 전압 소스 인버터 (VSIs)의 강인한 출력 전압 제어를 위한 디지털 제어기 구현과 총 고조파 왜곡(T.H.D.v) 분석을 포함한 시뮬레이션 및 실험 결과를 제시한다. 일반적으로 VSI는 내부 루프의 전류 제어기에 비례 적분(PI) 제어기를 사용하고 외부 루프의 전압 제어기에 비례 공진 (PR) 제어기가 사용된다. 그러나, 비선형 부하에서 여전히 3차, 5차 및 7차와 같은 고차 고조파 왜곡이 발생한다. 따라서 본 논문에서는 고조파 왜곡을 억제하기 위해 홀수 고조파 주파수에 대한 공진 제어기를 포함한 비례 다중 공진 (PMR) 제어기를 제안한다. VSI 플랜트용 컨트롤러의 주파수 응답을 분석하고 PMR 컨트롤러를 설계합니다. 시뮬레이션을 통해 PI와 PMR을 전압 제어기로 사용할 때 출력 전압의 총 고조파 왜곡 특성을 비교 검증합니다. 선형 및 비선형 하중 조건이 모두 고려되었습니다. 마지막으로 PMR 제어기를 3kW급 VSIs 프로토 타입에 적용하여 그 유효성을 입증하였다.

Keywords

Acknowledgement

This study was carried out as "Industrial Strategic Technolog Development Program-Next-generation power semiconductor technology development project based on compound materials (RS-2022-00144490)" with the support of the Ministry of Trade, Industry and Energy(MOTIE, Korea).

References

  1. M. Parvez, M. F. M. Elias, N. A. Rahim, F. Blaabjerg, D. Abbott and S. F. Al-Sarawi, "Comparative Study of Discrete PI and PR Controls for Single-hase UPS Inverter," IEEE Access, vol 8, pp.45584-5595, 2020. DOI: 10.1109/TCSII.2020.2975299.
  2. F. Sebaaly, H. Vahedi, H. Y. Kanaan and K. Al-Haddad, "Novel current controller based on MPC with fixed switching frequency operation for a grid-tied inverter," IEEE Trans. Ind. Electron., vol 65, no.8, pp.6198-6205, 2018. DOI: 10.1109/TIE.2017.2784400
  3. S. C. Majid and M. Monfared, "Simple digital current control strategy for single-phase gridonnected converters," IET Power Electronics, vol.8, no.2, pp.245-254, 2015. DOI: 10.1049/iet-pel.2014.0091
  4. J. H, Park, T. K. Roh, C. S. Kim, I. M. Ahn and J. I. Woo, "Design of Robust Double Digital Controller to Improve Performance for UPS Inverter," The Transactions of Institute of Power Electronics, vol.8, no.2, pp.116-127, 2003. DOI: 10.6113/TKPE.2011.16.4.317
  5. A. Nasiri, A. E. Amac and A. Emadi, "Series-arallel active filter/ uninterruptible power supply system," Electr. Power Compon. Syst., vol.32, no.11, pp.1151-1163, 2004. DOI: 10.1080/15325000490441507
  6. F. Blaabjerg and D. M. Ionel, "Renewable energy devices and systems State-of-the-art technology, research and development, challenges and future trends," Electr. Power Compon. Syst., vol.43, no.12, pp.1319-1328, 2015. DOI: 10.1080/15325008.2015.1062819
  7. J. H. Park, G. H. Hwang and D. W. Kim, "Development of Digital Controller and Monitoring System for UPS Inverter," The Institute of Electronics Engineers of Korea - System and Control, vol.44 no.1, pp.1-11, 2007.
  8. D. De and V. Ramanarayanan, "Decentralized parallel operation of inverters sharing unbalanced and non-linear loads," IIEEE Transactions on Power Electronics, vol. 25, no.12, pp.1126-1132, 2010. DOI: 10.1109/TPEL.2010.2068313
  9. L. Yang and J. Yang, "A Robust Dual-Loop Current Control Method With a Delay-Compensation Control Link for LCL-Type Shunt Active Power Filters," IEEE Transactions on Power Electronics, vol.34, no. 7, pp.6183-6199, 2019. DOI: 10.1109/TPEL.2018.2865813
  10. C. Rech, H. Pinheiro, H. Grundling, H. Hey, and J. Pinheiro, "A modified discrete control law for UPS applications," IEEE Transactions on Power Electronics, vol.18, no. 5, pp.1138-1145, 2003. DOI: 10.1109/TPEL.2003.816187
  11. P. C. Loh and D. G. Holmes, "Analysis of multiloop control strategies for LC/CL/LCL-filtered voltage source and current-source inverters," IEEE Trans. Ind. Appl., vol 41, no.2, pp.644-654, 2005. DOI: 10.1109/TIA.2005.844860
  12. Q. Zhao, H. Zhang, Y. Gao, S. Chen and Y. Wang, "Novel Fractional-Order Repetitive Controller Based on Thiran IIR Filter for Grid-Connected Inverters," IEEE Access, vol. 10, pp.82015-82024, 2022. DOI: 10.1109/ACCESS.2022.3196776
  13. H. Jiang, H. Pan and B. Shang, "An individual sequencing control strategy for three-phase foureg inverter under unbalanced loads," Energy Reports, vol.9, no.10, pp. 256-266, 2023. DOI: 10.1109/ACCESS.2020.2980247