The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.11A
/
pp.1079-1085
/
2007
This Paper Proposes a new optimization algorithm named by GBNSGA-II(Goal-pareto Based Non-dominated Sorting Genetic Algorithm-II) which uses Goal Programming to find non-dominated solutions in NSGA-II. Although the conventional NSGA is very popular to solve multiobjective optimization problem, its high computational complexity, lack of elitism and difficulty of selecting sharing parameter have been considered as problems to be overcome. To overcome these problems, NSGA-II has been introduced as the alternative for multiobjective optimization algorithm preventing aforementioned defects arising in the conventional NSGA. Together with advantageous features of NSGA-II, this paper proposes rather effective optimization algorithm formulated by purposely combining NSGA-II algorithm with GP (Goal Programming) subject to satisfying multiple objectives as possible as it can. By conducting computer simulations, the superiority of the proposed GBNSGA-II algorithm will be verified in the aspects of the effectiveness on optimization process in presence of a priori constrained goals and its fast converging capability.
This paper deals with multiobjective optimization of symmetrically laminated composite truncated circular conical shells subjected to external uniform pressure load and thermal load. The design objective is the maximization of the weighted sum of the critical buckling load and fundamental frequency. The design variable is the fibre orientations in the layers. The performance index is formulated as the weighted sum of individual objectives in order to obtain optimal solutions of the design problem. The first-order shear deformation theory (FSDT) is used in the mathematical formulation of laminated truncated conical shells. Finally, the effect of different weighting factors, length-to-radius ratio, semi-cone angle and boundary conditions on the optimal design is investigated and the results are compared.
A generalized nondifferentiable fractional optimization problem (GFP), which consists of a maximum objective function defined by finite fractional functions with differentiable functions and support functions, and a constraint set defined by differentiable functions, is considered. Recently, Kim et al. [Journal of Optimization Theory and Applications 129 (2006), no. 1, 131-146] proved optimality theorems and duality theorems for a nondifferentiable multiobjective fractional programming problem (MFP), which consists of a vector-valued function whose components are fractional functions with differentiable functions and support functions, and a constraint set defined by differentiable functions. In fact if $\overline{x}$ is a solution of (GFP), then $\overline{x}$ is a weakly efficient solution of (MFP), but the converse may not be true. So, it seems to be not trivial that we apply the approach of Kim et al. to (GFP). However, modifying their approach, we obtain optimality conditions and duality results for (GFP).
Fernando L. Tres Junior;Guilherme F. Medeiros;Moacir Kripka
Steel and Composite Structures
/
v.51
no.6
/
pp.647-659
/
2024
Given the increased interest in enhancing structural sustainability, the current study sought to apply multiobjective optimization to a footbridge with a steel-concrete composite I-girder structure. It was considered as objectives minimizing the cost for building the structure, the environmental impact assessed by CO2 emissions, and the vertical accelerations created by human-induced vibrations, with the goal of ensuring pedestrian comfort. Spans ranging from 15 to 25 meters were investigated. The resistance of the slab's concrete, the thickness of the slab, the dimensions of the welded steel I-profile, and the composite beam interaction degree were all evaluated as design variables. The optimization problem was handled using the Multiobjective Harmony Search (MOHS) metaheuristic algorithm. The optimization results were used to generate a Pareto front for each span, allowing us to assess the correlations between different objectives. By evaluating the values of design variables in relation to different levels of pedestrian comfort, it was identified optimal values that can be employed as a starting point in predimensioning of the type of structure analyzed. Based on the findings analysis, it is possible to highlight the relationship between the structure's cost and CO2 emission objectives, indicating that cost-effective solutions are also environmentally efficient. Pedestrian comfort improvement is especially feasible in smaller spans and from a medium to a maximum level of comfort, but it becomes expensive for larger spans or for increasing comfort from minimum to medium level.
Journal of the Korea institute for structural maintenance and inspection
/
v.24
no.3
/
pp.26-38
/
2020
Mixture design of self-compacting concrete is a typical multi-criteria decision making problem and conventional mixture designs are based on the low level engineering method like trials and errors through iteration method to satisfy the various requirements. This study concerns with performing the straightforward multiobjective design optimization of economic SCC mixture considering relative importances of the various requirements and cost-effectives of SCC. Total five requirements of 28day compressive strength, filling ability, segregation stability, material cost and mass were taken into consideration to prepare the objective function to be formulated in form of the weighted-multiobjective mixture design optimization problem. Economic SCC mixture computational design can be given in a rational way which considering material costs and the relative importances of the requiremets and from the result of this study it is expected that the development of SCC mixtue computational design and the consequent univeral concrete material design optimization methodology can be advanced.
International Journal of Control, Automation, and Systems
/
v.2
no.2
/
pp.247-255
/
2004
The majority of real-world problems encountered by engineers involve simultaneous optimization of competing objectives. In this case instead of single optima, there is a set of alternative trade-offs, generally known as Pareto-optimal solutions. The use of evolutionary algorithms Pareto GA, which was first introduced by Goldberg in 1989, has now become a sort of standard in solving Multiobjective Optimization Problems (MOPs). Though this approach was further developed leading to numerous applications, these applications are based on Pareto ranking and employ the use of the fitness sharing function to maintain diversity. Another scheme for solving MOPs has been presented by J. Nash to solve MOPs originated from Game Theory and Economics. Sefrioui introduced the Nash Genetic Algorithm in 1998. This approach combines genetic algorithms with Nash's idea. Another central achievement of Game Theory is the introduction of an Evolutionary Stable Strategy, introduced by Maynard Smith in 1982. In this paper, we will try to find ESS as a solution of MOPs using our game model based co-evolutionary algorithm. First, we will investigate the validity of our co-evolutionary approach to solve MOPs. That is, we will demonstrate how the evolutionary game can be embodied using co-evolutionary algorithms and also confirm whether it can reach the optimal equilibrium point of a MOP. Second, we will evaluate the effectiveness of our approach, comparing it with other methods through rigorous experiments on several MOPs.
Transactions of the Korean Society of Mechanical Engineers A
/
v.27
no.1
/
pp.144-151
/
2003
In this paper, an optimum design problem for endosseous implant in dentistry is studied to find best implant design. An optimum design problem is formulated to reduce stresses arising at the cortical as well as cancellous bones, in which sufficient design parameters are chosen fur design definition that encompasses major implants in popular use. Optimization at once (OAO) with the large number of design variables, however, causes too costly solution or even failure to converge. A concept of multilevel optimization (MLO) is employed to this end, which is to group the design variables of similar nature, solve the sub-problem of smaller size fur each group in sequence, and this is iterated until convergence. Each sub-problem is solved based on the response surface method (RSM) due to its efficiency for small sized problem. Favorable solution is obtained by the MLO, which is compared to both solutions made by RSM and sequential quadratic programming (SQP) in the OAO problem.
Transactions of the Korean Society of Mechanical Engineers A
/
v.21
no.1
/
pp.112-123
/
1997
The optimization techniques have been applied to versatile engineering problems for reducing manufacturing cost and for automatic design. The deterministic approaches or op5imization neglect the effects on uncertainties of design variables. The uncertainties include variation or perturbation such as tolerance band. The optimum may be useless when the constraints considering worst cases of design variables can not be satisfied, which results from constraint variation. The variation of design variables can also give rise to drastic change of performances. The two issues are related to constraint feasibility and insensitive performance. Robust design suggested in the present study is developed to gain an optimum insensitive to variation on design variables within feasible region. The multiobjective function is composed to the mean and the standard deviation of original objective function, while the constraints are supplemented by adding penalty term to original constraints. This method has a advantage that the second derivatives of the constraints are not required. A mathematical problem and several standard problems for structural optimization are solved to check out the usefulness of the suggested method.
Journal of the Institute of Electronics Engineers of Korea CI
/
v.39
no.4
/
pp.10-18
/
2002
Network topology design is a multiobjective problem with various design components. The components such as cost, message delay and reliability are important to gain the best performance. Recently, Genetic Algorithms(GAs) have been widely used as an optimization method for real-world problems such as combinatorial optimization, network topology design, and so on. This paper proposed a method of Multi-objective GA for Design of the network topology which is to minimize connection cost and message delay time. A common difficulty in multiobjective optimization is the existence of an objective conflict. We used the prufer number and cluster string for encoding, parato elimination method and niche-formation method for the fitness sharing method, and reformation elitism for the prevention of pre-convergence. From the simulation, the proposed method shows that the better candidates of network architecture can be found.
Transactions of the Korean Society of Mechanical Engineers A
/
v.34
no.7
/
pp.813-820
/
2010
The vertical roller mill is important for machine grinding and mixing various crude materials in the process of producing Portland cement. A vertical roller mill is subjected to cyclic bending stress because of the roller load. Because of the cyclic bending stress, only $4{\times}10^6-8{\times}10^6$ cycles are achieved instead of $4{\times}10^7$ cycles. The stress also causes fractures at the edge of grinding path of the outer roller. The expenses incurred in repairing the grinding path amounts to 30% of the total maintenance cost. Therefore, it is desirable to redesign the vertical roller mill in order to reduce the expenses incurred in repairing the roller. In this study, artificial neural networks (ANNs) were applied in order to solve the multiobjective optimization problem for vertical roller mills by using the function approximation ability of ANNs. To learn and generalize ANNs, the maximum and minimum stresses were estimated from the results of the finite-element analysis of a vertical roller mill. Thus, ANNs could be applied to solve the multiobjective optimization problem.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.