• Title/Summary/Keyword: multilayer structure

Search Result 478, Processing Time 0.029 seconds

A Study on the Design Method of Hybrid MOSFET-CNTFET based SRAM (하이브리드 MOSFET-CNTFET 기반 SRAM 디자인 방법에 관한 연구)

  • Geunho Cho
    • Journal of IKEEE
    • /
    • v.27 no.1
    • /
    • pp.65-70
    • /
    • 2023
  • More than 10,000 Carbon NanoTube Field Effect Transistors (CNTFETs), which have advantages such as high carrier mobility, large saturation velocity, low intrinsic capacitance, flexibility, and transparency, have been successfully integrated into one semiconductor chip using conventional semiconductor design procedures and manufacturing processes. Three-dimensional multilayer structure of the CNTFET semiconductor chip and various CNTFET manufacturing process research increase the possibility of making the hybrid MOSFET-CNTFET semiconductor chip which combines conventional MOSFETs and CNTFETs together in a semiconductor chip. This paper discusses a methodology to design 6T binary SRAM using hybrid MOSFET-CNTFET. By utilizing the existing MOSFET SRAM or CNTFET SRAM design method, we will introduce a method of designing a hybrid MOSFET-CNTFET SRAM and compare its performance with the conventional MOSFET SRAM and CNTFET SRAM.

Fabrication of Nanowire by Electrospinning Process Using Nickel Oxide Particle Recovered from MLCC (MLCC에서 회수된 산화니켈 분말의 전기방사공정을 통한 나노와이어 제조)

  • Haein Shin;Jongwon Bae;Minsu Kang;Kun-Jae Lee
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.502-508
    • /
    • 2023
  • With the increasing demand for electronic products, the amount of multilayer ceramic capacitor (MLCC) waste has also increased. Recycling technology has recently gained attention because it can simultaneously address raw material supply and waste disposal issues. However, research on recovering valuable metals from MLCCs and converting the recovered metals into high-value-added materials remains insufficient. Herein, we describe an electrospinning (E-spinning) process to recover nickel from MLCCs and modulate the morphology of the recovered nickel oxide particles. The nickel oxalate powder was recovered using organic acid leaching and precipitation. Nickel oxide nanoparticles were prepared via heat treatment and ultrasonic milling. A mixture of nickel oxide particles and polyvinylpyrrolidone (PVP) was used as the E-spinning solution. A PVP/NiO nanowire composite was fabricated via E-spinning, and a nickel oxide nanowire with a network structure was manufactured through calcination. The nanowire diameters and morphologies are discussed based on the nickel oxide content in the E-spinning solution.

Etching Anisotropy Depending on the SiO2 and Process Conditions of NF3 / H2O Remote Plasma Dry Cleaning (NF3 / H2O 원거리 플라즈마 건식 세정 조건 및 SiO2 종류에 따른 식각 이방 특성)

  • Hoon-Jung Oh;Seran Park;Kyu-Dong Kim;Dae-Hong Ko
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.26-31
    • /
    • 2023
  • We investigated the impact of NF3 / H2O remote plasma dry cleaning conditions on the SiO2 etching rate at different preparation states during the fabrication of ultra-large-scale integration (ULSI) devices. This included consideration of factors like Si crystal orientation prior to oxidation and three-dimensional structures. The dry cleaning process were carried out varying the parameters of pressure, NF3 flow rate, and H2O flow rate. We found that the pressure had an effective role in controlling anisotropic etching when a thin SiO2 layer was situated between Si3N4 and Si layers in a multilayer trench structure. Based on these observations, we would like to provide further guidelines for implementing the dry cleaning process in the fabrication of semiconductor devices having 3D structures.

  • PDF

A Study on the Initial Stability Calculation of Small Vessels Using Deep Learning Based on the Form Parameter Method (Form Parameter 기법을 활용한 딥러닝 기반의 소형선박 초기복원성 계산에 관한 연구)

  • Dongkeun Lee;Sang-jin Oh;Chaeog Lim;Jin-uk Kim;Sung-chul Shin
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.1
    • /
    • pp.161-172
    • /
    • 2024
  • Approximately 89% of all capsizing accidents involve small vessels, and despite their relatively high accident rates, small vessels are not subject to ship stability regulations. Small vessels, where the provision of essential basic design documents for stability calculations is omitted, face challenges in directly calculating their stability. In this study, considering that the majority of domestic coastal small vessels are of the Chine-type design, the goal is to establish the major hull form characteristic data of vessels, which can be identified from design documents such as the general arrangement drawing, as input data. Through the application of a deep learning approach, specifically a multilayer neural network structure, we aim to infer hydrostatic curves, operational draft ranges, and more. The ultimate goal is to confirm the possibility of directly calculating the initial stability of small vessels.

V-Band filter using Multilayer MCM-D Technology (MCM-D 공정기술을 이용한 V-BAND FILTER 구현에 관한 연구)

  • Yoo Chan-Sei;Song Sang-Sub;Part Jong-Chul;Kang Nam-Kee;Cha Jong-Bum;Seo Kwang-Seok
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.9 s.351
    • /
    • pp.64-68
    • /
    • 2006
  • Novel system-on-package (SOP) - D technology to improve the mechanical and thermal properties of a MCM-D substrate was suggested. Based on this investigation, the two types of band pass filters for the V-band application with unique structure were designed and implemented using 2-metals, 3-BCB layers. The first type using distributed resonator had the insertion loss below 2.6 dB at 55 GHz and group delay was below 0.06 ns. For the second type with edge coupled structure, the insertion loss and group delay were 3 dB and 0.1 ns, respectively. Suggested MCM-D substrate with band pass filter can be used to evaluate mm-Wave system including flip-chip bonded MMIC.

Interaction analysis of Continuous Slab Track (CST) on long-span continuous high-speed rail bridges

  • Dai, Gonglian;Ge, Hao;Liu, Wenshuo;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.713-723
    • /
    • 2017
  • As a new type of ballastless track, longitudinal continuous slab track (CST) has been widely used in China. It can partly isolate the interaction between the ballastless track and the bridge and thus the rail expansion device would be unnecessary. Compared with the traditional track, CST is composed of multi layers of continuous structures and various connecting components. In order to investigate the performance of CST on a long-span bridge, the spatial finite element model considering each layer of the CST structure, connecting components, bridge, and subgrade is established and verified according to the theory of beam-rail interaction. The nonlinear resistance of materials between multilayer track structures is measured by experiments, while the temperature gradients of the bridge and CST are based on the long-term measured data. This study compares the force distribution rules of ballasted track and CST as respectively applied to a long span bridge. The effects of different damage conditions on CST structures are also discussed. The results show that the additional rail stress is small and the CST structure has a high safety factor under the measured temperature load. The rail expansion device can be cancelled when CST is adopted on the long span bridge. Beam end rotation caused by temperature gradient and vertical load will have a significant effect on the rail stress of CST. The additional flexure stress should be considered with the additional expansion stress simultaneously when the rail stress of CST requires to be checked. Both the maximum sliding friction coefficient of sliding layer and cracking condition of concrete plate should be considered to decide the arrangement of connecting components and the ultimate expansion span of the bridge when adopting CST.

Analysis of Characteristics for Strip Line with a Ferrite Material using Spectral-Domain Method (주파수 영역법을 이용한 페라이트 물질이 포함된 스트립 선로 특성 해석)

  • 박진수;양승인
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.10 no.4
    • /
    • pp.498-505
    • /
    • 1999
  • The ferrite device that has nonreciprocal characteristics has been used as various microwave components. In this paper, the spectral-domain method was used to analyze the characteristics of structure(strip line on multilayer structure with ferrite material) for which no paper has been published yet. It is assumed that an external dc magnetic field is applied perpendicular to the ground conductor. The propagation constant is calculated for each parameter and frequency. Also we considered convergence by increasing the number of basis functions and verified the numerical analysis results. From the results, we could confirm that as the thicknesses of YIG is increased, the cutoff region is widened and the propagation constant is decreased at the frequency of upper cutoff region. For a larger applied dc magnetic field, the frequency of cutoff region is found to be increased. Also the simulation results for strip line show that the cutoff region is widened and the propagation constant is larger than that of microstrip line.

  • PDF

Growth and dielectric Properties or $BaTiO_3/SrTiO_3$ oxide artificial superlattice deposited by pulsed laser deposition (PLD) (Pulsed laser depostion (PLD)법으로 증착된 $BaTiO_3/SrTiO_3$ 산화물 초격자의 성장 및 유전특성)

  • 김주호;김이준;정동근;김용성;이재찬
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.3
    • /
    • pp.166-170
    • /
    • 2002
  • Artificial $BaTiO_3$(BTO)/$SrTiO_3$(STO) oxide superlattice have been deposited on MgO (100) single crystal substrate by pulsed laser deposition(PLD) method. The stacking periodicity of BTO/STO superlattice structure was varied from $BTO_{1\;unit\; cell}/STO_{1\;unit\; cell}$ to $BTO_{125\;unit\; cell}/STO_{125 \;unit \;cell}$ thickness with the total thickness of 100 nm. The result of X-ray diffraction showed the characteristics of superlattice in the BTO/STO multilayer structure. we have also confirmed that there was no interdiffusion at the interface between BTO and STO layers by high resolution transmission electron microscopy(HRTEM). The dielectric constant of superlattice increased with decreasing stacking periodicity of the BTO/STO superlattice within the critical thickness. The dielectric constant of the BTO/STO superlattice reached a maximum i.e., 1230 at a stacking perioicity of $BTO_{2\;unit\; cell}/STO_{2\;unit\; cell}$ .

Improvement in the negative bias stability on the water vapor permeation barriers on Hf doped $SnO_x$ thin film transistors

  • Han, Dong-Seok;Mun, Dae-Yong;Park, Jae-Hyeong;Gang, Yu-Jin;Yun, Don-Gyu;Sin, So-Ra;Park, Jong-Wan
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.110.1-110.1
    • /
    • 2012
  • Recently, advances in ZnO based oxide semiconductor materials have accelerated the development of thin-film transistors (TFTs), which are the building blocks for active matrix flat-panel displays including liquid crystal displays (LCD) and organic light-emitting diodes (OLED). However, the electrical performances of oxide semiconductors are significantly affected by interactions with the ambient atmosphere. Jeong et al. reported that the channel of the IGZO-TFT is very sensitive to water vapor adsorption. Thus, water vapor passivation layers are necessary for long-term current stability in the operation of the oxide-based TFTs. In the present work, $Al_2O_3$ and $TiO_2$ thin films were deposited on poly ether sulfon (PES) and $SnO_x$-based TFTs by electron cyclotron resonance atomic layer deposition (ECR-ALD). And enhancing the WVTR (water vapor transmission rate) characteristics, barrier layer structure was modified to $Al_2O_3/TiO_2$ layered structure. For example, $Al_2O_3$, $TiO_2$ single layer, $Al_2O_3/TiO_2$ double layer and $Al_2O_3/TiO_2/Al_2O_3/TiO_2$ multilayer were studied for enhancement of water vapor barrier properties. After thin film water vapor barrier deposited on PES substrate and $SnO_x$-based TFT, thin film permeation characteristics were three orders of magnitude smaller than that without water vapor barrier layer of PES substrate, stability of $SnO_x$-based TFT devices were significantly improved. Therefore, the results indicate that $Al_2O_3/TiO_2$ water vapor barrier layers are highly proper for use as a passivation layer in $SnO_x$-based TFT devices.

  • PDF

A Thermal Model for Silicon-on-Insulator Multilayer Structure in Silicon Recrystallization Using Tungsten Lamp (텅스텐 램프를 이용한 실리콘 재결정시의 SOI 다층구조에 대한 열적모델)

  • 경종민
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.5
    • /
    • pp.90-99
    • /
    • 1984
  • A onetimensional distribution of the temperature and the heat source in the SOI (silicon-on-insulator) multi-layer structure illuminated by tungsten lamps from both sides was obtained by solving the heat equation in steady state on a finite difference grid using successive over-relaxation method. The heat source distribution was obtained by considering such features as spectral components of the light source, multiple reflection at the internal interfaces, temperature and frequency dependence of the light absorption coefficient, etc. The front and back surface temperatures, which are boundary conditions for the heat equation, were derived from a requirement that they satisfy the radiation conditions. The radiation flux as well as the conduction flux was considered in modelling the thermal behaviour at the internal interfaces. Since the temperature and the heat source profiles are strongly dependent upon each other, the calculation of each profile was iterated using the updated profile of the other until they are consistent with each other. The experimental temperature at the front surface of the wafer as measured by Pyrometer was about 1200$^{\circ}$K, while the simulated temperature was 1120$^{\circ}$K.

  • PDF