This paper proposes the learning method of an artificial neural network and a convolutional neural network using the WFSO algorithm developed as an optimization algorithm. Since the optimization algorithm searches based on a number of candidate solutions, it has a drawback in that it is generally slow, but it rarely falls into the local optimal solution and it is easy to parallelize. In addition, the artificial neural networks with non-differentiable activation functions can be trained and the structure and weights can be optimized at the same time. In this paper, we describe how to apply WFSO algorithm to artificial neural network learning and compare its performances with error back-propagation algorithm in multilayer artificial neural networks and convolutional neural networks.
Ahn, Yeonseon;Jang, Da Eun;Cha, Yong-Bum;Kim, Mansu;Ahn, Kwang-Hyun;Kim, Young Chul
Bulletin of the Korean Chemical Society
/
v.34
no.1
/
pp.107-111
/
2013
A new green-emitting material with donor-acceptor architecture, 3,7-bis(1'-phenylbenzimidazole-2'-yl)-10-phenylphenothiazine (BBPP) was synthesized and its thermal, optical, and electroluminescent characteristics were investigated. Organic light-emitting diodes (OLEDs) with four different multilayer structures were prepared using BBPP as an emitting layer. The optimized device with the structure of [ITO/2-TNATA (40 nm)/BBPP (30 nm)/TPBi (30 nm)/Alq3 (10 nm)/LiF (1 nm)/Al (100 nm)] exhibited efficient green emission. Enhanced charge carrier balance and electron mobility in the organic layers enabled the device to demonstrate a maximum luminance of 31,300 cd/$m^2$, a luminous efficiency of 6.83 cd/A, and an external quantum efficiency of 1.62% with the CIE 1931 chromaticity coordinates of (0.21, 0.53) at a current density of 100 mA/$cm^2$.
The Transactions of the Korean Institute of Electrical Engineers D
/
v.53
no.8
/
pp.551-560
/
2004
In this paper, we propose a new architecture of Self-Organizing Fuzzy Polynomial Neural Networks (SOFPNN) that is based on a genetically optimized multilayer perceptron with fuzzy polynomial neurons (FPNs) and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed SOFPNN gives rise to a structurally optimized structure and comes with a substantial level of flexibility in comparison to the one we encounter in conventional SOFPNNs. The design procedure applied in the construction of each layer of a SOFPNN deals with its structural optimization involving the selection of preferred nodes (or FPNs) with specific local characteristics (such as the number of input variables, the order of the polynomial of the consequent part of fuzzy rules, and a collection of the specific subset of input variables) and addresses specific aspects of parametric optimization. Through the consecutive process of such structural and parametric optimization, an optimized and flexible fuzzy neural network is generated in a dynamic fashion. To evaluate the performance of the genetically optimized SOFPNN, the model is experimented with using two time series data(gas furnace and chaotic time series), A comparative analysis reveals that the proposed SOFPNN exhibits higher accuracy and superb predictive capability in comparison to some previous models available in the literatures.
In this paper, we propose Self-Organizing Fuzzy Polynomial Neural Networks(SOFPNN) architecture for optimal model identification and discuss a comprehensive design methodology supporting its development. It is shown that this network exhibits a dynamic structure as the number of its layers as well as the number of nodes in each layer of the SOFPNN are not predetermined (as this is the case in a popular topology of a multilayer perceptron). As the form of the conclusion part of the rules, especially the regression polynomial uses several types of high-order polynomials such as linear, quadratic, and modified quadratic. As the premise part of the rules, both triangular and Gaussian-like membership function are studied and the number of the premise input variables used in the rules depends on that of the inputs of its node in each layer. We introduce two kinds of SOFPNN architectures, that is, the basic and modified one with both the generic and the advanced type. The superiority and effectiveness of the proposed SOFPNN architecture is demonstrated through nonlinear function numerical example.
Journal of the Korean Institute of Electrical and Electronic Material Engineers
/
v.31
no.6
/
pp.408-411
/
2018
We fabricated highly flexible Mn-doped $SnO_2$ (MTO)/Ag/MTO/polydimethylsiloxane (PDMS)/MTO multilayer transparent conducting films. To reduce refractive-index mismatching of the MTO/Ag/MTO/polyethylene terephthalate (PET), index-matching layers were inserted between the oxide-metal-oxide-structured films and the PET substrate. The PDMS layer was deposited by spin-coating after adjusting the mixing ratio of PDMS and hexane. We investigated the effects of the index-matching layer on the color and reflectance differences with different PDMS dilution ratios. As the dilution ratio increased from 1:100 to 1:130, the color difference increased slightly, while the reflectance difference decreased from 0.62 to 0.32. The MTO/Ag/MTO/PDMS/MTO film showed a transmittance of 87.18~87.68% at 550 nm. The highest value of the Haacke figure of merit was $47.54{\times}10^{-3}{\Omega}^{-1}$ for the dilution ratio of 1:130.
Kim, Seong-Min;Ju, Pil-Jae;An, Guk-Mun;Kim, Byeong-Su;Yun, Myeong-Han
Proceedings of the Korean Vacuum Society Conference
/
2013.08a
/
pp.278.1-278.1
/
2013
Among the prerequisites for stable neural interfacing are the long-term stability of electrical performance of and the excellent biocompatibility of conducting materials in implantable neural electrodes. Reduced graphene oxide offers a great potential for a variety of biomedical applications including biosensors and, particularly, neural interfaces due to its superb material properties such as high electrical conductivity, decent optical transparency, facile processibility, and etc. Nonetheless, there have been few systematic studies on the graphene-based neural interfaces in terms of biocompatibility of electrode materials and long term stability in electrical characteristics. In this research, we prepared the primary culture of rat hippocampal neurons directly on reduced graphene oxide films which is chosen as a model electrode material for the neural electrode. We observed that the viability of primary neuronal culture on the present structure is minimally affected by nanoscale graphene flakes below. These results implicate that the multilayer films of reduced graphene oxides can be utilized for the next-generation neural interfaces with decent biocompatibility and outstanding electrical performance.
This paper reports the deposition of a metal line using a multilayer stack and laser-induced forward transfer (LIFT) using a low cost continuous wave blue laser with a wavelength of 450 nm. The donor structure was composed of a light-to-heat (LTH) layer, a release layer, and a transfer layer in series. Amorphous silicon as the LTH layer absorbs photon energy and converts it to heat. A release layer was melted so that a silver transfer layer would be transferred to the receiver substrate. The transferred silver layer showed reasonable physical and electrical characteristics. A low cost fine linewidth metal layer could be achieved using this modified LIFT technique and blue laser.
Optical thin films were deposited by using a reactive pulsed DC magnetron sputtering method with a high density plasma(HDP). In this study, the effect of sputtering process conditions on the microstructure and optical properties of $SiO_2$, $TiO_2$, $Nb_2O_5$ thin films was clarified. These thin films had flat and dense microstructure, stable stoichiometric composition at the optimal conditions of low working pressure, high pulsed DC power and RF power(HDP). Also, the refractive index of the $SiO_2$ thin films was almost constant, but the refractive indices of $TiO_2$ and $Nb_2O_5$ thin films were changed depending on the microstructure of these films. Antireflection films of $Air/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/SiO_2/Nb_2O_5/Glass$ structure designed by Macleod program were manufactured by our developed sputtering system. Transmittance and reflectance of the manufactured multilayer films showed outstanding value with the level of 95% and 0.3%, respectively, and also had excellent durability.
Ultra thin layers of NiFeCo or NiFe were inserted at the interfaces of Ni and Cu to form a multilayer structure. In case of inserting a NiFe layer, the magnetoresistance was about 6%, the saturation magnetic field was 50 Oe and the hysteresis of R-H (resistance-magnetic field) was very small. In case of inserting a NiFeCo layer, the magnetoresistance increased to about 7% but the saturation magnetic field and hysteresis were also increased. The increase of the output under biased magnetic field was much larger in case of inserting a NiFe layer because of relatively smaller hysteresis in R-H behavior.
InSb thin films with a thickness of approximately 300 nm were prepared using single- and double-source vacuum evaporation methods and their structures and properties were investigated in terms of a heat treatment procedure. The double-source InSb films, prepared by the alternate stacking of In and Sb, were polycrystalline in structure and included small amounts of unreacted In and Sb phases. After annealing at elevated temperatures below the melting point of InSb (525$^{\circ}C$), the films changed into the InSb phase and were found to contain small amounts of unreacted In. The formation capability of the InSb compound was slightly lower for multilayer films than for single-layer films. The electrical and galvanomagnetic properties were found to be strongly related to the microstructures of the films. The maximum value of the Hall mobility and the magnetoresistance were determined to be $4.3{\times}10^3cm^2$/Vs and 70%, respectively, for the single-layer films, while these values for the alternately stacked films were respectively $2.9{\times}10^3cm^2$/Vs and 29% for the $[Sb(2.5)/In(2.5)]_{60}$ films, and $3.1{\times}10^3cm^2$/Vs and 10% for the $[Sb(150)/In(150)]_1$ films.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.