DOI QR코드

DOI QR Code

A Study of the Electrical and Galvanomagnetic Properties of InSb Films

  • Bae, Chang-Hwan (Dept. of Mechatronics Engineering, Hoseo University) ;
  • Lee, Ju-Hee (Dept. of Mechatronics Engineering, Hoseo University) ;
  • Han, Chang-Suk (Dept. of Defense Science & Technology, Hoseo University)
  • Received : 2009.09.23
  • Published : 2010.04.15

Abstract

InSb thin films with a thickness of approximately 300 nm were prepared using single- and double-source vacuum evaporation methods and their structures and properties were investigated in terms of a heat treatment procedure. The double-source InSb films, prepared by the alternate stacking of In and Sb, were polycrystalline in structure and included small amounts of unreacted In and Sb phases. After annealing at elevated temperatures below the melting point of InSb (525$^{\circ}C$), the films changed into the InSb phase and were found to contain small amounts of unreacted In. The formation capability of the InSb compound was slightly lower for multilayer films than for single-layer films. The electrical and galvanomagnetic properties were found to be strongly related to the microstructures of the films. The maximum value of the Hall mobility and the magnetoresistance were determined to be $4.3{\times}10^3cm^2$/Vs and 70%, respectively, for the single-layer films, while these values for the alternately stacked films were respectively $2.9{\times}10^3cm^2$/Vs and 29% for the $[Sb(2.5)/In(2.5)]_{60}$ films, and $3.1{\times}10^3cm^2$/Vs and 10% for the $[Sb(150)/In(150)]_1$ films.

Keywords

References

  1. T. R. Yang, Y Cheng, and J. B. Wang, Thin Solid Films 498, 158 (2006) https://doi.org/10.1016/j.tsf.2005.07.067
  2. T. S. Rao, C. Halpin, and J. B. Webb, Thin Solid Films 163, 399 (1988)
  3. J. C. Kong, H. Z. Li, and L. D. Kong, Infra. Tech. 30, 351 (2008)
  4. T. Miyazaki, M. Mori, and S. Adachi, Appl. Phys. Letters 58, 116 (1991) https://doi.org/10.1063/1.104972
  5. Y Nishibayashi, T. Imura, and Y Osaka, Jap. J Appl. Phys. Letters 26, 1437 (1987) https://doi.org/10.1143/JJAP.26.L1437
  6. W. W. Lam and I. Shih, Mater. Letters 16, 8 (1993) https://doi.org/10.1016/0167-577X(93)90174-V
  7. M. Tomisu, N. Inoue, and Y Yasuoka, Vacuum. 47, 239 (1996) https://doi.org/10.1016/0042-207X(95)00208-1
  8. V. Senthilkumar, M. Thamilselvan, and K. PremNazeer, Vacuum. 79, 163 (2005) https://doi.org/10.1016/j.vacuum.2005.03.004
  9. S. H. Lee, B. I. Lee, and S. K. Joo, J. Kor. Inst. Met. & Mater. 34, 1278 (1996)
  10. H. Okimura, T. Matsumae, and M. Oshita, J. Appl. Phys. 66, 4252 (1989) https://doi.org/10.1063/1.343966
  11. J. I. Chyi, D. Biswas, S. V. Lyer, N. S. Kumar, and H. Morkoc, Appl. Phys. Letters 54, 1016 (1989) https://doi.org/10.1063/1.100784
  12. A. Semenov, O. G. Lyublinskaya, and V. A. Solovev, J. Crystal Growth. 301/302, 58 (2007)
  13. S. D. Wu, L. W. Guo, and Z. H. Li, J. Crystal Growth. 277, 21 (2005) https://doi.org/10.1016/j.jcrysgro.2004.12.141
  14. L. Haworth, J. Lu, and D. I. Westwood, Appl. Surf Sci. 166, 418 (2000) https://doi.org/10.1016/S0169-4332(00)00460-8
  15. J. C. Ferrer, A. Cornet, and F. Peiro, Mater. Res. Soc. Symp. Proc. 399, 473 (1996)
  16. J. C. Chen, P. Bush, W. K. Chen, and P. L. Lin, Appl. Phys. Letters 53, 773 (1988) https://doi.org/10.1063/1.99829
  17. D. Ban, H. Luo, and H. C. Liu, Photonic applications in devices and communication systems. 59700C (2005)
  18. S. Li, E. Kubalek, and Y lin, J. Mater. Sci. 34, 2561 (1999) https://doi.org/10.1023/A:1004640413744
  19. R. J. Egan, V. W. Chin, and T. L. Tansley, Semicon. Sci. & Tech. 9, 1591 (1994) https://doi.org/10.1088/0268-1242/9/9/004
  20. J. C. M. Brentano and J. D. Richards, Phys. Rev. 94, 1427 (1954)