• Title/Summary/Keyword: multilayer film

Search Result 392, Processing Time 0.022 seconds

Preparation of Low Resistivity Transparent Conductive multilayer Thin Films by The Facing Targets Sputtering (대향 타겟식 스퍼티링법을 이용한 저저항 투명전도 다층박막의 제작)

  • Kim, Sang Mo;Park, Yong Seo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.13 no.2
    • /
    • pp.13-16
    • /
    • 2014
  • We prepared the ITO/Ag multilayer thin films on soda-lime glass substrate by the Facing Target Sputtering System (FTS) at room temperature. To confirm the effect of Ag layer in ITO/Ag multilayer thin films, we have prepared various range of Ag layer in its thickness and investigated prior to the setting of ITO/Ag multilayer thin films. The thickness of Ag layer was controlled by the sputtering deposition time. Properties of as-prepared samples were investigated by using a four-point probe, UV-Visual spectrometer with a spectral visual range (400 - 800 nm) and X-ray diffractometer (XRD). As a result, the transmittance of as-prepared samples turned out to be very low in the visible range due to light-scattering on the surface of thin film as the thickness of Ag layer got increased. However, reduction of phenomenon of light-reflection in visual range was observed around 20nm of Ag thickness. We prepared the ITO/Ag multilayer thin film with a resistivity of about $8{\times}10^{-5}[{\Omega}-cm]$ and a transmittance of more than 80 % at 550 nm.

The variation of optical pass length between incident and reflective beam in multilayer thin film (다층박막에서의 입사광과 반사광의 광로정변화)

  • 김문환;최영규
    • Korean Journal of Optics and Photonics
    • /
    • v.13 no.6
    • /
    • pp.515-520
    • /
    • 2002
  • The variation of the optical pass length between incident and reflective beam in a multilayer thin film reflection mirror is investigated. This variation is caused mainly by environmental parameters around the optical system, such as the air pressure, temperature, humidity and $CO_2$concentration. In this paper, a new method for measuring optical pass length variation is proposed. This optical pass length is measured against the above parameters by experiment. From the experimental results, it is clarified that the optical pass length is mostly effected by humidity changes.

Preparation of AZO thin film adding to Ag layer (은전도층이 추가된 AZO 박막 제작)

  • Kim, Sang-Mo;Lee, Ji-Hoon;Rim, You-Seung;Son, In-Hwan;Keum, Min-Jong;Kim, Kyung-Hwan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.385-386
    • /
    • 2007
  • We prepared the Al doped ZnO coating Ag multilayer thin films on glass without substrate heating using FTS system. The structure of multilayer thin films has Al doped ZnO/Ag/Al doped ZnO(AZO/Ag/AZO). The thickness of top and bottom AZO thin films were fixed to 50 nm, respectively and controlled the thickness of Ag thin films with deposition time. As-doped multilayer thin films were prepared at 1mTorr and input power (DC) of 100W at room temperature. To investigate the film properties, we employed four-point probe, UVNIS spectrometer, X-ray diffractometer (XRD), scanning electron microscopy (SEM), Hall Effect measurement system and Atomic Force Microscope (AFM).

  • PDF

Microstructure and Properties of ITO and ITO/Ag/ITO Multilayer Thin Films Prepared by D.C. Magnetron Sputtering (D.C. 마그네트론 스퍼터링법으로 제조한 ITO 및 ITO/Ag/ITO 박막의 미세조직과 투명 전극 특성)

  • Choi, Yong-Lak;Kim, Seon-Hwa
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.490-496
    • /
    • 2006
  • ITO monolayer and ITO/Ag/ITO multilayer thin films are prepared by D.C. magnetron sputtering method. Ag layer was inserted for applying ITO to a flexible substrate at low temperature. Carrier concentration and carrier mobility of ITO and ITO/Ag/ITO thin films were measured, the transmittance of them also was done. The amorphous phase was confirmed to be combined in addition to (400) and (440) peaks from XRD result of ITO thin film. As the substrate temperature increased, the preferred orientation of (400) appeared. From the result of application of Ag layer at room temperature, the growth of columnar structure was inhibited, and the amorphous phase formed mostly. The ITO/Ag/ITO thin film represented the transmittance of above 80% when the thickness of Ag layer was 50 ${\AA}$, and the concentration of carrier increased up to above 10 times than that of ITO thin film. Finally, since very low resistance of 3.9${\Omega}/{\square}$ was observed, the effective application of low temperature process is expected to be possible for ITO thin film.

Refractive-index matched layers applied to flexible conductive MTO/Ag/MTO multilayer films on the PET substrate

  • Sangmoo Yoon;Gun-Eik Jang
    • Journal of Ceramic Processing Research
    • /
    • v.22 no.1
    • /
    • pp.114-120
    • /
    • 2021
  • A hybrid structure of Mn (2.59 wt.%) doped SnO2 (MTO)/Ag/MTO films with refractive index matching layers (IMLs) was deposited on PET substrate by a RF/DC magnetron sputtering method at room temperature. To match the refractive index (n) of MTO/Ag/MTO/PET film, high and low refractive index materials of MTO (n = 2.02) and SiO2 (n = 1.52) were placed between MTO/Ag/MTO and PET substrate, respectively. In order to evaluate the effect of IMLs on the reflectivity and color variation, an optical simulation program, Essential Macleod Program (EMP) was adopted, in advance. From EMP simulation, the multilayer film of MTO (40 nm)/Ag (13 nm)/MTO (40 nm) with optimized IMLs of SiO2 (120 nm)/MTO (10 nm) shows the excellent optical transmittance above 86.1% at the 550 nm wavelength, and the pattern visible defect was reduced as compared with the reference film of MTO/Ag/MTO/PET film without IMLs. From the bending test, the multilayer film of MTO (40 nm)/Ag (13 nm)/MTO (40 nm)/SiO2 (90 nm)/MTO (10 nm)/PET showed excellent flexible properties. There was only 10% resistance variation under 10,000 bending cycle with curvature radius of 5 mm.

Characterization of Highly Conducting ZnMgBeGaO/Ag/ZnMgBeGaO Transparent Conductive Multilayer Films with UV Energy Bandgap

  • Le, Ngoc Minh;Hoang, Ba Cuong;Lee, Byung-Teak
    • Korean Journal of Materials Research
    • /
    • v.27 no.12
    • /
    • pp.695-698
    • /
    • 2017
  • ZnMgBeGaO/Ag/ZnMgBeGaO multilayer structures were sputter grown and characterized in detail. Results indicated that the electrical properties of the ZnMgBeGaO films were significantly improved by inserting an Ag layer with proper thickness (~ 10 nm). Structures with thicker Ag films showed much lower optical transmission, although the electrical conductivity was further improved. It was also observed that the electrical properties of the multilayer structure were sizably improved by annealing in vacuum (~35 % at $300^{\circ}C$). The optimum ZnMgBeGaO(20nm)/Ag(10nm)/ZnMgBeGaO(20nm) structure exhibited an electrical resistivity of ${\sim}2.6{\times}10^{-5}{\Omega}cm$ (after annealing), energy bandgap of ~3.75 eV, and optical transmittance of 65 % ~ 95 % over the visible wavelength range, representing a significant improvement in characteristics versus previously reported transparent conductive materials.

Preparation of Al/Al2O3 Multilayer Coatings on NdFeB Permanent Magnet and their Corrosion Characteristics (NdFeB 영구자석에의 Al/Al2O3 다층막 코팅 및 부식 특성)

  • Jeong, J.I.;Yang, J.H.
    • Journal of Surface Science and Engineering
    • /
    • v.42 no.2
    • /
    • pp.86-94
    • /
    • 2009
  • Various types of multilayer coatings including Al/$Al_2O_3$ structure have been prepared on Nd-Fe-B permanent magnet to modify the morphology of the coating and to enhance the corrosion resistance of the magnet. Magnetron sputtering has been employed to make the multilayer coatings. $Al_2O_3$sputtering conditions were optimized in reactive sputtering by varying the deposition parameters. The formation of $Al_2O_3$ film was confirmed from the binding energy shift measured by electron spectroscopy for chemical analysis. 3 types of coating structures were designed and prepared by magnetron sputtering. The coating structures consist of (1) single Al coating, (2) modified coatings having oxide or plasma treated layer in the middle of coating structure, and (3) Al/$Al_2O_3$ multilayer coatings. Surface and cross-sectional morphologies showed that Al/$Al_2O_3$ multilayer grew as a layered structure, and that very compact Zone 3 like structure were formed. X-ray diffraction peak showed that the crystal orientations of multilayer coatings were similar to that of the bulk powder pattern. Hardness increased drastically when the Al thickness was around 1im in the Al/$Al_2O_3$ multilayer. From the salt spray test and pressure cooker test, it has been shown that the multilayer coatings showed good corrosion resistance compared to Al single or modified layer coatings.

Reliability Evaluation of Atomic layer Deposited Polymer / Al2O3 Multilayer Film for Encapsulation and Barrier of OLEDs in High Humidity and Temperature Environments (OLED Barrier와 Encapsulation을 위한 원자층 증착 Polymer / Al2O3 다층 필름의 온습도 신뢰도 평가 분석)

  • Lee, Sayah;Song, Yoon Seog;Kim, Hyun;Ryu, Sang Ouk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.4
    • /
    • pp.1-4
    • /
    • 2017
  • Encapsulation of organic based devices is essential issue due to easy deterioration of organic material by water vapor. Atomic layer deposition (ALD) is a promising solution because of its low temperature deposition and quality of the deposited film. Moisture permeation has a mechanism to pass through defects, Thin Film Encapsulation using inorganic / organic / inorganic hybrid film has been used as promising technology. $Al_2O_3$ / Polymer / $Al_2O_3$ multilayer film has shown excellent environmental protection characteristics despite of thin thicknesses of the films.

  • PDF

Hydrogen-Bonding Induced Alternating Thin Films of Dendrimer and Block Copolymer Micelle

  • Park, Chi-Young;Rhue, Mi-Kyo;Im, Min-Ju;Kim, Chul-Hee
    • Macromolecular Research
    • /
    • v.15 no.7
    • /
    • pp.688-692
    • /
    • 2007
  • The hydrogen-bonding induced alternating multilayer thin films of dendrimers and block copolymer micelles were demonstrated. The block copolymer micelles derived from amphiphilic poly(2-ethyl-2-oxazoline)block-$poly({\varepsilon}-carprolactone)$ (PEtOz-PCL) in aqueous phase have a core-shell structure with a mean hydrodynamic diameter of 26 nm. The hydrogen bonding between the PEtOz outer shell of micelle and the carboxyl unit of poly(amidoamine) dendrimer of generation 4.5 (PAMAM-4.5G) at pH 3 was utilized as a driving force for the layerby-layer alternating deposition. The multilayer thin film was fabricated on the poly(methyl methacrylate) (PMMA) thin film spin-coated on silicon wafer or glass substrate by the alternate dipping of PEtOz-PCL micelles and PAMAM dendrimers in aqueous solution at pH 3. The formation of multilayer thin film was characterized by using ellipsometry, UV-vis spectroscopy, and atomic force microscopy. The PEtOz outer shell of PEtOz-PCL micelle provided the pH-responsive hydrogen bonding sites with peripheral carboxylic acids of PAM AM dendrimer. The multilayer thin film was reversibly removed after dipping in aqueous solution at $pH{\geq}5.6$ due to dissociation of the hydrogen bonding between PEtOz shell of PEtOz-PCL micelle and peripheral carboxyl units of PAMAM dendrimer.