• Title/Summary/Keyword: multilayer ceramic actuator(MCA)

Search Result 7, Processing Time 0.017 seconds

Fabrication of a high performance microvalve using a multilayer piezoelectric actuator and its characteristics (적층형 압전 엑츄에이터를 이용한 고성능 마이크로 밸브의 제작과 그 특성)

  • Seo, Jung-Ho;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.390-391
    • /
    • 2006
  • This paper describes the design, fabrication and characteristics of a micromachined piezoelectric valve utilizing a multilayer ceramic actuator (MCA). The micromachined MCA valve, which uses a buckling effect, consists of three separate structures: the MCA, the valve actuator die and the seat die. The valve seat die with 6 trenches was made, and the actuator die, which is driven by the MCA under optimized conditions, was also fabricated. After Si wafer direct bonding between the seat die and the actuator die, the MCA was also anodically bonded to the seat/actuator die structure. A polydimethylsiloxane (PDMS) sealing pad was fabricated to minimize the leak rate. Finally, the PDMS sealing pad was also bonded to the seat die and the stainless steel package. The MCA valve shows a flow rate of 9.13 sccm at an applied DC voltage of 100 V with a 50% duty cycle and a maximum non-linearity of 2.24% FS. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, as a medical bio-system and in the automobile industry.

  • PDF

Electric-Field-Induced Strain Properties of Multi Layer Ceramic Actuator Using PMN-PZ-PT Ceramics (PMN-PZ-PT 세라믹스를 이용한 적층형 액츄에이터의 변위특성)

  • Ha, Mun-Su;Jeong, Soon-Jong;Koh, Jung-Hyuk;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.620-623
    • /
    • 2003
  • Non-linear behaviors of multilayer piezoelectric ceramic actuator (MCA) were investigated under electrical and mechanical stress. DC 100 V bias was applied to the MCA to obtain displacement. Laser vibrometer, which using Doppler effect, was employed to characterize displacement caused by $d_{33}$ mode of MCA. To understand this non-linear behavior of MCA, displacement was measured and compared under different load states. By increasing load, electric field-induced strain and piezoelectric constant($d_{33}$) of MCA was decreased. We attribute this phenomenon to the domain wall motion and depoling of MCA under heavy load.

  • PDF

Fabrication and Characteristics of a Piezoelectric Valve for MEMS using a Multilayer Ceramic Actuator (적층형 세라믹 엑추에이터를 이용한 MEMS용 압전밸브의 제작 및 특성)

  • 정귀상;김재민;윤석진
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.5
    • /
    • pp.515-520
    • /
    • 2004
  • We report on the development of a Piezoelectric valvc that is designed to have a high reliability for fluid control systems, such as mass flow control, transportation and chemical analysis. The valve was fabricated using a MCA(multilayer ceramic actuator), which has a low consumption power, high resolution and accurate control. The fabricated valve is composed of MCA, a valve actuator die and an seat die. The design of the actuator dic was done by FEM(finite element method) modeling, respectively. And, the valve seat die with 6 trenches was made. and the actuator die, which possible to optimize control to MCA, was fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the scat/actuator die structure. PDMS(poly dimethylsiloxane) sealing pad was fabricated to minimize a leak-rate. It was also bonded to scat die and stainless steel package. The flow rate was 9.13 sccm at a supplied voltage of 100 V with a 50 % duty ratio and non-linearity was 2.24 % FS. From these results, the fabricated MCA valve is suitable for a variety of flow control equipments, a medical bio-system, semiconductor fabrication process, automobile and air transportation industry with low cost, batch recess and mass production.

Fabrication of a buckling micro MCA valve (버클링 마이크로 적층형 압전밸브의 제작)

  • Lee, Jong-Hwa;Chung, Gwiy-Sang
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.47-52
    • /
    • 2006
  • This paper describes the design, fabrication and characteristics of a buckling microvalve using a MCA (multilayer ceramic actuator). The mechanical and fluidic analysis are done by finite element method. The designed structure is normally closed microvalve using buckling effect, which is consist of three separate structures; a valve seat die, an actuator die and a small piezoelectric actuator. The flow rate of the fabricated MCA valve was 0-8.13 ml/min at the applied pressure of 0-50 kPa. Maximum non-linearity was 2.24 % FS at a duty cycle of 50 %. The maximum pressure was 230 kPa and the leak rate was $3.03{\times}10^{-8}\;Pa{\cdot}m^{3}/cm^{2}$ at a supply voltage of 100 V.

Fabrication of a Micro Multilayer Piezo Actuator Valve and Its Characteristics (마이크로 적층형 압전밸브의 제작과 그 특성)

  • Chung, Gwiy-Sang;Kimm, Jae-Min;Cho, Sang-Bock
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.913-916
    • /
    • 2005
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 sccm at a supplied voltage of 100 V with a 50 % duty cycle, maximum non-linearity was 2.24 % FS and leak rate was $3.03{\times}10^{-8}pa$. $m^3/cm^2$.

  • PDF

Fabrication of MCA Valve For MEMS (MEMS용 적층형 압전밸브의 제작)

  • Kim, Jae-Min;Yun, Jae-Young;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.129-132
    • /
    • 2004
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 sccm at a supplied voltage of 100 V with a 50 % duty cycle, maximum non-linearity was 2.24 % FS and leak rate was $3.03{\times}10^{-8}\;pa{\cdot}m^3/cm^2$. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, a medical bio-system, automobile and air transportation industry.

  • PDF

Design, Fabrication and Characteristics of a MCA Valve (적층형 압전밸브의 설계, 제작 및 특성)

  • Chung, Gwiy-Sang;Kim, Jae-Min;Yoon, Suk-Jin;Jeong, Soon-Jong;Song, Jae-Sung
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.230-235
    • /
    • 2004
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 seem at a supplied voltage of 100 V with a 50% duty cycle, maximum non-linearity was 2.24% FS and leak rate was $3.03{\times}10^{-8}pa{\codt}m^{3}/cm^{2}$. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, a medical bio-system, automobile and air transportation industry.