• Title/Summary/Keyword: multifractal packing measure

Search Result 11, Processing Time 0.019 seconds

REGULARITIES OF MULTIFRACTAL HEWITT-STROMBERG MEASURES

  • Attia, Najmeddine;Selmi, Bilel
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.1
    • /
    • pp.213-230
    • /
    • 2019
  • We construct new metric outer measures (multifractal analogues of the Hewitt-Stromberg measure) $H^{q,t}_{\mu}$ and $P^{q,t}_{\mu}$ lying between the multifractal Hausdorff measure ${\mathcal{H}}^{q,t}_{\mu}$ and the multifractal packing measure ${\mathcal{P}}^{q,t}_{\mu}$. We set up a necessary and sufficient condition for which multifractal Hausdorff and packing measures are equivalent to the new ones. Also, we focus our study on some regularities for these given measures. In particular, we try to formulate a new version of Olsen's density theorem when ${\mu}$ satisfies the doubling condition. As an application, we extend the density theorem given in [3].

RELATIVE MULTIFRACTAL SPECTRUM

  • Attia, Najmeddine
    • Communications of the Korean Mathematical Society
    • /
    • v.33 no.2
    • /
    • pp.459-471
    • /
    • 2018
  • We obtain a relation between generalized Hausdorff and packing multifractal premeasures and generalized Hausdorff and packing multifractal measures. As an application, we study a general formalism for the multifractal analysis of one probability measure with respect to an other.

NOTE ON THE MULTIFRACTAL MEASURES OF CARTESIAN PRODUCT SETS

  • Attia, Najmeddine;Guedri, Rihab;Guizani, Omrane
    • Communications of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.1073-1097
    • /
    • 2022
  • In this paper, we shall be concerned with evaluation of multifractal Hausdorff measure 𝓗q,t𝜇 and multifractal packing measure 𝓟q,t𝜇 of Cartesian product sets by means of the measure of their components. This is done by investigating the density result introduced in [34]. As a consequence, we get the inequalities related to the multifractal dimension functions, proved in [35], by using a unified method for all the inequalities. Finally, we discuss the extension of our approach to studying the multifractal Hewitt-Stromberg measures of Cartesian product sets.

SOME RESULTS ABOUT THE REGULARITIES OF MULTIFRACTAL MEASURES

  • Selmi, Bilel
    • Korean Journal of Mathematics
    • /
    • v.26 no.2
    • /
    • pp.271-283
    • /
    • 2018
  • In this paper, we generelize the Olsen's density theorem to any measurable set, allowing us to extend the main results of H.K. Baek in (Proc. Indian Acad. Sci. (Math. Sci.) Vol. 118, (2008), pp. 273-279.). In particular, we tried through these results to improve the decomposition theorem of Besicovitch's type for the regularities of multifractal Hausdorff measure and packing measure.

MULTIFRACTAL ANALYSIS OF A GENERAL CODING SPACE

  • Baek, In Soo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.19 no.4
    • /
    • pp.357-364
    • /
    • 2006
  • We study Hausdorff and packing dimensions of subsets of a general coding space with a generalized ultra metric from a multifractal spectrum induced by a self-similar measure on a self-similar Cantor set using a function satisfying a H${\ddot{o}}$older condition.

  • PDF

MULTIFRACTAL ANALYSIS OF A CODING SPACE OF THE CANTOR SET

  • Baek, In Soo
    • Korean Journal of Mathematics
    • /
    • v.12 no.1
    • /
    • pp.1-5
    • /
    • 2004
  • We study Hausdorff and packing dimensions of subsets of a coding space with an ultra metric from a multifractal spectrum induced by a self-similar measure on a Cantor set using a function satisfying a H$\ddot{o}$lder condition.

  • PDF

SIMPLE APPROACH TO MULTIFRACTAL SPECTRUM OF A SELF-SIMILAR CANTOR SET

  • BAEK, IN-Soo
    • Communications of the Korean Mathematical Society
    • /
    • v.20 no.4
    • /
    • pp.695-702
    • /
    • 2005
  • We study the transformed measures with respect to the real parameters of a self-similar measure on a self-similar Can­tor set to give a simple proof for some result of its multifractal spectrum. A transformed measure with respect to a real parameter of a self-similar measure on a self-similar Cantor set is also a self­similar measure on the self-similar Cantor set and it gives a better information for multifractals than the original self-similar measure. A transformed measure with respect to an optimal parameter deter­mines Hausdorff and packing dimensions of a set of the points which has same local dimension for a self-similar measure. We compute the values of the transformed measures with respect to the real parameters for a set of the points which has same local dimension for a self-similar measure. Finally we investigate the magnitude of the local dimensions of a self-similar measure and give some correlation between the local dimensions.

MULTIFRACTAL BY SELF-SIMILAR MEASURES

  • Baek, In-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.497-503
    • /
    • 2007
  • We consider a non-empty subset having same local dimension of a self-similar measure on a most generalized Cantor set. We study trans-formed lower(upper) local dimensions of an element of the subset which are local dimensions of all the self-similar measures on the most generalized Cantor set. They give better information of Hausdorff(packing) dimension of the afore-mentioned subset than those only from local dimension of a given self-similar measure.