DOI QR코드

DOI QR Code

NOTE ON THE MULTIFRACTAL MEASURES OF CARTESIAN PRODUCT SETS

  • Attia, Najmeddine (Analysis, Probability and Fractals Laboratory LR18ES17 Department of Mathematics Faculty of Sciences of Monastir University of Monastir) ;
  • Guedri, Rihab (Analysis, Probability and Fractals Laboratory LR18ES17 Department of Mathematics Faculty of Sciences of Monastir University of Monastir) ;
  • Guizani, Omrane (Analysis, Probability and Fractals Laboratory LR18ES17 Department of Mathematics Faculty of Sciences of Monastir University of Monastir)
  • Received : 2021.10.21
  • Accepted : 2022.02.07
  • Published : 2022.10.01

Abstract

In this paper, we shall be concerned with evaluation of multifractal Hausdorff measure 𝓗q,t𝜇 and multifractal packing measure 𝓟q,t𝜇 of Cartesian product sets by means of the measure of their components. This is done by investigating the density result introduced in [34]. As a consequence, we get the inequalities related to the multifractal dimension functions, proved in [35], by using a unified method for all the inequalities. Finally, we discuss the extension of our approach to studying the multifractal Hewitt-Stromberg measures of Cartesian product sets.

Keywords

References

  1. N. Attia, H. Jebali, and M. Ben Hadj Khlifa, A note on fractal measures and Cartesian product sets, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 6, 4383-4404. https://doi.org/10.1007/s40840-021-01172-1
  2. N. Attia and B. Selmi, Regularities of multifractal Hewitt-Stromberg measures, Commun. Korean Math. Soc. 34 (2019), no. 1, 213-230. https://doi.org/10.4134/CKMS.c180030
  3. N. Attia and B. Selmi, A multifractal formalism for Hewitt-Stromberg measures, J. Geom. Anal. 31 (2021), no. 1, 825-862. https://doi.org/10.1007/s12220-019-00302-3
  4. H. K. Baek and H. H. Lee, Regularity of d-measure, Acta Math. Hungar. 99 (2003), no. 1-2, 25-32. https://doi.org/10.1023/A:1024597010100
  5. H. K. Baek, Regularities of multifractal measures, Proc. Indian Acad. Sci. Math. Sci. 118 (2008), no. 2, 273-279. https://doi.org/10.1007/s12044-008-0019-3
  6. A. S. Besicovitch and P. A. P. Moran, The measure of product and cylinder sets, J. London Math. Soc. 20 (1945), 110-120. https://doi.org/10.1112/jlms/s1-20.2.110
  7. A. S. Besicovitch, On existence of subsets of finite measure of sets of infinite measure, Indag. Math. 14 (1952), 339-344. https://doi.org/10.1016/S1385-7258(52)50045-3
  8. C. D. Cutler, The density theorem and Hausdorff inequality for packing measure in general metric spaces, Illinois J. Math. 39 (1995), no. 4, 676-694. http://projecteuclid. org/euclid.ijm/1255986272 https://doi.org/10.1215/ijm/1255986272
  9. C. Dellacherie, Ensembles analytiques, capacites, mesures de Hausdorff, Lecture Notes in Mathematics, Vol. 295, Springer-Verlag, Berlin, 1972.
  10. G. A. Edgar, Integral, Probability, and Fractal Measures, Springer-Verlag, New York, 1998. https://doi.org/10.1007/978-1-4757-2958-0
  11. G. A. Edgar, Centered densities and fractal measures, New York J. Math. 13 (2007), 33-87. http://nyjm.albany.edu:8000/j/2007/13_33.html
  12. K. Falconer, Fractal Geometry, third edition, John Wiley & Sons, Ltd., Chichester, 2014.
  13. R. Guedri and N. Attia, On the generalized Hausdorff and packing measures of product sets in metric space, Mathematical Inequalities & Applications Krag. J. Math. 25 (2022), no. 2, 335-358.
  14. O. Guizani and N. Attia, A note on scaling properties of Hewitt-Stromberg measure, Filomat, to appear.
  15. O. Guizani, A. Mahjoub, and N. Attia, On the Hewitt-Stromberg measure of product sets, Ann. Mat. Pura Appl. (4) 200 (2021), no. 2, 867-879. https://doi.org/10.1007/s10231-020-01017-x
  16. O. Guizani, A. Mahjoub, and N. Attia, Some relations between Hewitt-Stromberg premeasure and Hewitt-Stromberg measure, Filomat, to appear.
  17. H. Haase, A contribution to measure and dimension of metric spaces, Math. Nachr. 124 (1985), 45-55. https://doi.org/10.1002/mana.19851240104
  18. H. Haase, Open-invariant measures and the covering number of sets, Math. Nachr. 134 (1987), 295-307. https://doi.org/10.1002/mana.19871340121
  19. H. Haase, Dimension of measures, Acta Univ. Carolin. Math. Phys. 31 (1990), no. 2, 29-34.
  20. H. Haase, On the dimension of product measures, Mathematika 37 (1990), no. 2, 316-323. https://doi.org/10.1112/S0025579300013024
  21. E. Hewitt and K. Stromberg, Real and Abstract Analysis. A modern treatment of the theory of functions of a real variable, Springer-Verlag, New York, 1965.
  22. J. D. Howroyd, On dimension and on the existence of sets of finite positive Hausdorff measure, Proc. London Math. Soc. (3) 70 (1995), no. 3, 581-604. https://doi.org/10.1112/plms/s3-70.3.581
  23. J. D. Howroyd, On Hausdorff and packing dimension of product spaces, Math. Proc. Cambridge Philos. Soc. 119 (1996), no. 4, 715-727. https://doi.org/10.1017/S0305004100074545
  24. X. Hu and S. J. Taylor, Fractal properties of products and projections of measures in Rd, Math. Proc. Cambridge Philos. Soc. 115 (1994), no. 3, 527-544. https://doi.org/10.1017/S0305004100072285
  25. H. Joyce and D. Preiss, On the existence of subsets of finite positive packing measure, Mathematika 42 (1995), no. 1, 15-24. https://doi.org/10.1112/S002557930001130X
  26. S. Jurina, N. MacGregor, A. Mitchell, L. Olsen, and A. Stylianou, On the Hausdorff and packing measures of typical compact metric spaces, Aequationes Math. 92 (2018), no. 4, 709-735. https://doi.org/10.1007/s00010-018-0548-5
  27. H. H. Lee and I. S. Baek, The relations of Hausdorff, ∗-Hausdorff, and packing measures, Real Anal. Exchange 16 (1990/91), no. 2, 497-507.
  28. H. H. Lee and I. S. Baek, On d-measure and d-dimension, Real Analysis Exchange 17 (1992), 590-596. https://doi.org/10.2307/44153752
  29. H. Lihu and Y. Jinghu, Subsets with Finite measure of multifractal Hausdorff measures, J. Math. Resear & Expositions. 20 (2000), no. 2, 166-170.
  30. J. M. Marstrand, The dimension of Cartesian product sets, Proc. Cambridge Philos. Soc. 50 (1954), 198-202. https://doi.org/10.1017/s0305004100029236
  31. P. Mattila, Geometry of sets and measures in Euclidean spaces, Cambridge Studies in Advanced Mathematics, 44, Cambridge University Press, Cambridge, 1995. https://doi.org/10.1017/CBO9780511623813
  32. P. Mattila, The Geometry of Sets and Measures in Euclidean Spaces, Cambridge University Press, Cambrdige, 1995.
  33. P. Mattila and R. D. Mauldin, Measure and dimension functions: measurability and densities, Math. Proc. Cambridge Philos. Soc. 121 (1997), no. 1, 81-100. https://doi.org/10.1017/S0305004196001089
  34. L. Olsen, A multifractal formalism, Adv. Math. 116 (1995), no. 1, 82-196. https://doi.org/10.1006/aima.1995.1066
  35. L. Olsen, Multifractal dimensions of product measures, Math. Proc. Cambridge Philos. Soc. 120 (1996), no. 4, 709-734. https://doi.org/10.1017/S0305004100001675
  36. L. Olsen, Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures, Math. Scand. 86 (2000), no. 1, 109-129. https://doi.org/10.7146/math.scand.a-14284
  37. Y. B. Pesin, Dimension theory in dynamical systems, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1997. https://doi.org/10.7208/chicago/9780226662237.001.0001
  38. C. A. Rogers, Hausdorff Measures, Cambridge University Press, London, 1970.
  39. X. Saint Raymond and C. Tricot, Packing regularity of sets in n-space, Math. Proc. Cambridge Philos. Soc. 103 (1988), no. 1, 133-145. https://doi.org/10.1017/S0305004100064690
  40. S. J. Taylor and C. Tricot, Packing measure, and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), no. 2, 679-699. https://doi.org/10.2307/1999958
  41. S. J. Taylor and C. Tricot, The packing measure of rectifiable subsets of the plane, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 2, 285-296. https://doi.org/10.1017/S0305004100064203