• 제목/요약/키워드: multidisciplinary system

검색결과 304건 처리시간 0.027초

Multidisciplinary Approach to Breast Cancer Care

  • Juon, Hee-Soon
    • Perspectives in Nursing Science
    • /
    • 제4권1호
    • /
    • pp.1-8
    • /
    • 2007
  • Aim: The purpose of this paper is to present the importance of multidisciplinary strategies in cancer prevention and control, especially comprehensive breast cancer care. Background: Worldwide, breast cancer is the most common cancer diagnosed among women and is the leading cause of cancer deaths. Although the incidence of breast cancer in Asian countries is still lower than in Western countries, the rate of increase for the last two decades is striking. Methods: Data on cancer mortality, incidence, and risk factors were summarized by using the most recent data available from population-based cancer registries affiliated with the International Union Against Cancer, the National Cancer Institute's Surveillance, Epidemiology, and End Results (SEER) program and the CDC's National Program of Cancer Registries (NPCR). Results: Global differences in breast cancer incidence and fluctuations in rates within a country still exist. The incidence of breast cancer in Asian countries was lower than in Western countries. Breast cancer incidence in the United States decreased each year during 1999-2003. On the other hand, morbidity and mortality related to breast cancer in Asia has increased significantly. Conclusion: Multidisciplinary strategies to reduce breast cancer mortality and promote breast cancer awareness are addressed. Lessons learned from multidisciplinary approaches to cancer treatment and control will be valuable in implementing future breast cancer research in the fields of basic, clinical, and population research in Asia.

  • PDF

Biomass partitioning and physiological responses of four Moroccan barley varieties subjected to salt stress in a hydroponic system

  • Said Bouhraoua;Mohamed Ferioun;Srhiouar Nassira;Abdelali Boussakouran;Mohamed Akhazzane ;Douae Belahcen;Khalil Hammani;Said Louahlia
    • Journal of Plant Biotechnology
    • /
    • 제50권
    • /
    • pp.115-126
    • /
    • 2023
  • A hydroponics experiment was performed to study the physiological and biochemical changes in Moroccan barley (Hordeum vulgare L.) varieties cultivated under salt stress conditions. Four barley varieties were grown under exposure to three salt concentrations, including 0, 200, and 300 mM NaCl. The ANOVA for both salt stress-sensitive and resistant varieties indicated that salt treatment represented the main source of variability in all studied traits. Salt treatment significantly reduced root and shoot dry weight (RDW and SDW), relative water content (RWC), and chlorophyll content (Chl a, Chl b, and Chl T). However, increases in electrolyte leakage (EL) along with proline and total soluble sugar (TSS) contents were recorded. In addition, large variations in all measured traits were found between varieties. The 'Massine' and 'Laanaceur' varieties displayed relatively higher RDW and SDW values. The 'Amira' and 'Adrar' varieties showed lower RWC values and Chl contents than those of the controls indicating their relative sensitivity to salt stress. Principal component analysis revealed that most of the variation was captured by PC1 (72% of the total variance) which grouped samples into three categories according to salt treatment. Correlation analyses highlighted significant associations between most parameters. Positive relationships were found between RDW, SDW, RWC, Chl content, and soluble proteins contents, while all of these parameters were negatively associated with EL intensity, proline content, and TSS content. The results from this study showed that the 'Massine' and 'Laanaceur' varieties were relatively salt-tolerant. These two salt-tolerant varieties present a good genetic background for breeding of barley varieties showing high salt tolerance.

Multi-Objective Design Exploration for Multidisciplinary Design Optimization Problems

  • Obayashi Shigeru;Jeong Shinkyu;Chiba Kazuhisa
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 추계 학술대회논문집
    • /
    • pp.1-10
    • /
    • 2005
  • A new approach, Multi-Objective Design Exploration (MODE), is presented to address Multidisciplinary Design Optimization (MDO) problems by CFD-CSD coupling. MODE reveals the structure of the design space from the trade-off information and visualizes it as a panorama for Decision Maker. The present form of MODE consists of Kriging Model, Adaptive Range Multi Objective Genetic Algorithms, Analysis of Variance and Self-Organizing Map. The main emphasis of this approach is visual data mining. An MDO system using high fidelity simulation codes, Navier-Stokes solver and NASTRAN, has been developed and applied to a regional-jet wing design. Because the optimization system becomes very computationally expensive, only brief exploration of the design space has been performed. However, data mining result demonstrates that design knowledge can produce a good design even from the brief design exploration.

  • PDF

Multidisciplinary Design Optimization of Suspension System for Vibration Reduction of Drum Type Washer (진동저감을 위한 드럼세탁기 현가시스템의 다분야통합최적설계)

  • 이태희;현상학;유홍희;최동훈;전시문;김동원;김영호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.429-432
    • /
    • 2004
  • Multidisciplinary design optimization technique is applied to drum type washer in order to minimize the vibration of the cabinet. Dynamic analysis and structural analysis are carried out by using commercial programs to obtain the reliable responses. Analysis models are compared to the experimental responses and finally validated for further design. Two commercial programs are integrated by the design framework EMDIOS that provides interfaces to conveniently link between analyzers and performs design optimization. In this research we could obtain an optimum design that reduces the magnitude of amplitude by about 33% compared with the original design.

  • PDF

Adaptive Parallel Decomposition for Multidisciplinary Design

  • Park, Hyung-Wook;Lee, Se J.;Lee, Hyun-Seop;Park, Dong-Hoon
    • Journal of Mechanical Science and Technology
    • /
    • 제18권5호
    • /
    • pp.814-819
    • /
    • 2004
  • The conceptual design of a rotorcraft system involves many different analysis disciplines. The decomposition of such a system into several subsystems can make analysis and design more efficient in terms of the total computation time. Adaptive parallel decomposition makes the structure of the overall design problem suitable to apply the multidisciplinary design optimization methodologies and it can exploit parallel computing. This study proposes a decomposition method which adaptively determines the number and sequence of analyses in each sub-problem corresponding to the available number of processors in parallel. A rotorcraft design problem is solved and as a result, the adaptive parallel decomposition method shows better performance than other previous methods for the selected design problem.

Role of Artificial Neural Networks in Multidisciplinary Optimization and Axiomatic Design

  • Lee, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.695-700
    • /
    • 2008
  • Artificial neural network (ANN) has been extensively used in areas of nonlinear system modeling, analysis and design applications. Basically, ANN has its distinct capabilities of implementing system identification and/or function approximation using a number of input/output patterns that can be obtained via numerical and/or experimental manners. The paper describes a role of ANN, especially a back-propagation neural network (BPN) in the context of engineering analysis, design and optimization. Fundamental mechanism of BPN is briefly summarized in terms of training procedure and function approximation. The BPN based causality analysis (CA) is further discussed to realize the problem decomposition in the context of multidisciplinary design optimization. Such CA is also applied to quantitatively evaluate the uncoupled or decoupled design matrix in the context of axiomatic design with the independence axiom.

  • PDF

Analysis of effect on power system considering the maximum penetration limit of wind power (풍력발전 한계운전용량에 대한 계통영향 분석)

  • Myung, Ho-San;Kim, Bong-Eon;Kim, Hyeong-Taek;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • 제32권3호
    • /
    • pp.19-25
    • /
    • 2012
  • About supply and demand to see that you need to match, the limitations of wind power capacity is low demand and the commitment of the general generator will exist between the minimum generation. if the turbine's output can be controlled, The limitation of wind power capacity will be adopted based on instant power generation. Namely, The minimum limits of wind power generation based load operation by calculating the amount that is higher than if the output should be restricted to highest operation. in this paper, we committed to the demand for low enough that the combination of the general generator of wind power capacity to accommodate the operation of determining whether the limit is intended to. For this, power system analysis program PSS/E was used, Jeju system by implementing the model simulations were performed.

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사로켓 최적설계)

  • Choi Young Chang;Lee Jae-Woo;Byun Yung-Hwan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 한국추진공학회 2005년도 제24회 춘계학술대회논문집
    • /
    • pp.11-15
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better result than sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91 kg, total length of 6.18 m, outer diameter of 0.60 m and the payload mass of 7.5 kg has been successfully designed.

  • PDF

Optimal Supersonic Air-Launching Rocket Design Using Multidisciplinary System Optimization Approach (다분야 최적화 기법을 이용한 공중발사 로켓 최적설계)

  • Choi, Young-Chang;Lee, Jae-Woo;ByUn, Yung-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • 제33권12호
    • /
    • pp.26-32
    • /
    • 2005
  • Compared with the conventional ground rocket launching, air-launching has many advantages. However, a comprehensive and integrated system design approach is required because the physical geometry of air launch vehicle is quite dependent on the installation limitation of the mother plane. The system design has been performed using two different approaches: the sequential optimization and the multidisciplinary feasible(MDF) optimization method. Analysis modules include mission analysis, staging, propulsion analysis, configuration, weight analysis, aerodynamics analysis and trajectory analysis. MDF optimization shows better results than the sequential optimization. As a result of system optimization, a supersonic air launching rocket with total mass of 1244.91kg, total length of 6.36m, outer diameter of 0.60m and the payload mass of 7.5kg has been successfully designed.

Study on Electrochemical Performances of PEO-based Composite Electrolyte by Contents of Oxide Solid Electrolyte (산화물계 고체전해질 함량에 따른 PEO 기반 복합전해질 전기화학 성능 연구)

  • Lee, Myeong Ju;Kim, Ju Young;Oh, Jimin;Kim, Ju Mi;Kim, Kwang Man;Lee, Young-Gi;Shin, Dong Ok
    • Journal of the Korean Electrochemical Society
    • /
    • 제21권4호
    • /
    • pp.80-87
    • /
    • 2018
  • Safety issues in Li-ion battery system have been prime concerns, as demands for power supply device applicable to wearable device, electrical vehicles and energy storage system have increased. To solve safety problems, promising strategy is to replace organic liquid electrolyte with non-flammable solid electrolyte, leading to the development of all-solid-state battery. However, relative low conductivity and high resistance from rigid solid-solid interface hinder a wide application of solid electrolyte. Composite electrolytes composed of organic and inorganic parts could be alternative solution, which in turn bring about the increase of conductivity and conformal contact at physically rough interfaces. In our study, composite electrolytes were prepared by combining poly(ethylene oxide)(PEO) and $Li_7La_3Zr_2O_{12}$ (LLZO). The crystallinity, morphology and electrochemical performances were investigated with the control of LLZO contents from 0 wt% to 50 wt%. From the results, it is concluded that optimum content and uniform dispersion of LLZO in polymer matrix are significant to improve overall conductivity of composite electrolyte.