• Title/Summary/Keyword: multibody systems dynamics

Search Result 75, Processing Time 0.028 seconds

Recent Developments in Multibody Dynamics

  • Schiehlen Werner
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.227-236
    • /
    • 2005
  • Multibody system dynamics is based on classical mechanics and its engineering applications originating from mechanisms, gyroscopes, satellites and robots to biomechanics. Multibody system dynamics is characterized by algorithms or formalisms, respectively, ready for computer implementation. As a result simulation and animation are most convenient. Recent developments in multibody dynamics are identified as elastic or flexible systems, respectively, contact and impact problems, and actively controlled systems. Based on the history and recent activities in multibody dynamics, recursive algorithms are introduced and methods for dynamical analysis are presented. Linear and nonlinear engineering systems are analyzed by matrix methods, nonlinear dynamics approaches and simulation techniques. Applications are shown from low frequency vehicles dynamics including comfort and safety requirements to high frequency structural vibrations generating noise and sound, and from controlled limit cycles of mechanisms to periodic nonlinear oscillations of biped walkers. The fields of application are steadily increasing, in particular as multibody dynamics is considered as the basis of mechatronics.

Multibody Dynamics in Arterial System

  • Shin Sang-Hoon;Park Young-Bae;Rhim Hye-Whon;Yoo Wan-Suk;Park Young-Jae;Park Dae-Hun
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.343-349
    • /
    • 2005
  • There are many things in common between hemodynamics in arterial systems and multibody dynamics in mechanical systems. Hemodynamics is concerned with the forces generated by the heart and the resulting motion of blood through the multi-branched vascular system. The conventional hemodynamics model has been intended to show the general behavior of the body arterial system with the frequency domain based linear model. The need for detailed models to analyze the local part like coronary arterial tree and cerebral arterial tree has been required recently. Non-linear analysis techniques are well-developed in multibody dynamics. In this paper, the studies of hemodynamics are summarized from the view of multibody dynamics. Computational algorithms of arterial tree analysis is derived, and proved by experiments on animals. The flow and pressure of each branch are calculated from the measured flow data at the ascending aorta. The simulated results of the carotid artery and the iliac artery show in good accordance with the measured results.

Modeling Technique for a Positive and Negative Variable Displacement Swash Plate Hydraulic Piston Pump in a Multibody Dynamics and Multi-Physics Co-Simulation Environment (다물체 동역학과 다중물리 연동 시뮬레이션 환경에서 정/역 가변용량형 사판식 피스톤 펌프의 모델링 기법)

  • Jang, Jin Hyun;Jeong, Heon Sul
    • Journal of Drive and Control
    • /
    • v.16 no.1
    • /
    • pp.36-44
    • /
    • 2019
  • Variable displacement swash plate piston pump analysis requires electric, hydraulics and dynamics which are similar to the one's incorporated in the complex fluid power and mechanical systems. The main variable capacity for the swash plate piston pumps, hydraulics or simple kinematic (swash plate degree, piston displacement) models are analyzed using AMESim, a multi-physics analysis program. AMESim is a multi-physics hydraulic analysis program that is considered good for the environment but not appropriate for environmental analysis for multibody dynamics. In this study, the analytical model of the swash plate type hydraulic piston pump variable capacity is modeled by combining the hydraulic part and the dynamic part through co-simulation of multibody dynamics program (Virtual.lab Motion) and multi-physics analysis (AMESim). This paper describes the whole modeling analysis method on the mechanical analysis of the multi-body dynamics program and how the hydraulic analysis in multi-physics analysis program works. This paper also presents a methodology for analyzing complex fluid power systems.

Event-based scenario manager for multibody dynamics simulation of heavy load lifting operations in shipyards

  • Ha, Sol;Ku, Namkug;Roh, Myung-Il
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.83-101
    • /
    • 2016
  • This paper suggests an event-based scenario manager capable of creating and editing a scenario for shipbuilding process simulation based on multibody dynamics. To configure various situation in shipyards and easily connect with multibody dynamics, the proposed method has two main concepts: an Actor and an Action List. The Actor represents the anatomic unit of action in the multibody dynamics and can be connected to a specific component of the dynamics kernel such as the body and joint. The user can make a scenario up by combining the actors. The Action List contains information for arranging and executing the actors. Since the shipbuilding process is a kind of event-based sequence, all simulation models were configured using Discrete EVent System Specification (DEVS) formalism. The proposed method was applied to simulations of various operations in shipyards such as lifting and erection of a block and heavy load lifting operation using multiple cranes.

Development of a Internet-based Dynamic Simulation System for Multibody Systems (인터넷 기반 범용 다물체 동역학 시뮬레이션 시스템 개발)

  • Lee, Jai-Kyung;Han, Hyung-Suk;Seo, Jong-Whi;Park, Tae-Won
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.699-704
    • /
    • 2003
  • A Internet-based dynamic simulation system, called P-DYN, for multibody dynamic systems is developed. All the interfaces of the system are accessible via Web browsers, such as Netscape or Explorer. The system uses a template type P-DYN/Modeler as a preprocessor. The P-DYN postprocessor composed of P-DYN/Plotter and P-DYN/Animator is developed in JAVA. The P-DYN/Solver for predicting the dynamic behavior is run on the server. Anyone who wants to simulate the dynamics of multibody systems or share results data can access the analysis system over the Internet regardless of their OS, platform, or location.

  • PDF

Web-based Simulation System for Multibody Systems

  • Han, Hyung-Suk
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.6
    • /
    • pp.50-60
    • /
    • 2003
  • A web-based dynamic simulation system, called O-DYN, for multibody systems is developed. All the interfaces of the system are accessible via web browsers, such as Netscape or Explorer. The system uses a block-diagram type O-DYN/Modeler developed in JAVA Applet as a preprocessor. The O-DYN postprocessor composed of O-DYN/Plotter and O-DYN/Animator is developed in JAVA Applet. The O-DYN/Solver for predicting the dynamic behavior is run on the web server. Anyone who wants to simulate the dynamics of multibody systems or share results data can access the analysis system over the internet regardless of their OS, platform, or location.

Analysis on Dynamic Characteristics of Power Transmission System Using Multibody Dynamics (다물체계 해석 방법을 이용한 동력 전달계의 특성 해석)

  • 우민수;공진형;한형석;임원식;박영일;이장무
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.476-480
    • /
    • 2003
  • This paper presents an effective method to analyze the dynamic characteristics for the shilling transients of power transmission system using the multibody dynamics, which is composed of subsystem equation, subsystem assemble, and the self-determining technique for the system degree of freedom. Using the advantages of multibody dynamics, the proposed method can be used easily for mathematical models of mechanical systems, such as a power transmission, compared with newtonian method. With this theory, dynamic simulation program was developed. The program can be used to verify system performances, transient phenomena, and other dynamic problems. The simulation of a target system was presented, and its validity was attained by being compared with the previous analysis using newtonian method.

  • PDF

Development of a Multibody Dynamic Analysis System for Internet-Based Engineering Service (인터넷 기반 공학서비스를 위한 다물체 동역학 해석 시스템 개발)

  • Han, Hyeong-Seok;Sin, Dong-U;Lee, Jae-Gyeong
    • 연구논문집
    • /
    • s.32
    • /
    • pp.95-102
    • /
    • 2002
  • An Internet-based dynamic analysis system, called P-DYN, for multibody dynamic systems is developed. All the interfaces of the system are accessible via Web browsers, such as Netscape or Explorer. The system uses a template type P-DYN/Modeler as a preprocessor. The P-DYN postprocessor composed of P-DYN/Plotter and P-DYN/Animator is developed in JAVA. The P-DYN/Solver for predicting the dynamic behavior is run on the server. Anyone who wants to analyze the dynamics of multibody systems or share results data can access the analysis system over the Internet regardless of their OS, platform, or location.

  • PDF

Selection of efficient coordinate partitioning methods in flexible multibody systems (탄성 시스템에서의 효율적인 좌표분할법 선정에 관한 연구)

  • Kim, Oe-Jo;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.8
    • /
    • pp.1311-1321
    • /
    • 1997
  • In multibody dynamics, differential and algebraic equations which can satisfy both equation of motion and kinematic constraint equation should be solved. To solve these equations, coordinate partitioning method and constraint stabilization method are commonly used. In the coordinate partitioning method, the coordinates are divided into independent and dependent and coordinates. The most typical coordinate partitioning method are LU decomposition, QR decomposition, and SVD (singular value decomposition). The objective of this research is to find an efficient coordinate partitioning method in the dynamic analysis of flexible multibody systems. Comparing two coordinate partitioning methods, i.e. LU and QR decomposition in the flexible multibody systems, a new hybrid coordinate partitioning method is suggested for the flexible multibody analysis.

Study on the Dynamic Model and Simulation of a Flexible Mechanical Arm Considering its Random Parameters

  • He Bai-Yan;Wang Shu-Xin
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.265-271
    • /
    • 2005
  • Randomness exists in engineering. Tolerance, assemble-error, environment temperature and wear make the parameters of a mechanical system uncertain. So the behavior or response of the mechanical system is uncertain. In this paper, the uncertain parameters are treated as random variables. So if the probability distribution of a random parameter is known, the simulation of mechanical multibody dynamics can be made by Monte-Carlo method. Thus multibody dynamics simulation results can be obtained in statistics. A new concept called functional reliability is put forward in this paper, which can be defined as the probability of the dynamic parameters(such as position, orientation, velocity, acceleration etc.) of the key parts of a mechanical multibody system belong to their tolerance values. A flexible mechanical arm with random parameters is studied in this paper. The length, width, thickness and density of the flexible arm are treated as random variables and Gaussian distribution is used with given mean and variance. Computer code is developed based on the dynamic model and Monte-Carlo method to simulate the dynamic behavior of the flexible arm. At the same time the end effector's locating reliability is calculated with circular tolerance area. The theory and method presented in this paper are applicable on the dynamics modeling of general multibody systems.