• Title/Summary/Keyword: multi-time scale

Search Result 522, Processing Time 0.033 seconds

Multi-Time Scale Separations and Optimal Control Problems of Multi-Parameter Singular Perturbation Systems (여러 매개상수 특이접동계에서의 여러 시간스케일 분리와 최적제어 문제)

  • Kim, Sam-Soo;Hong, Jae-Keun;Kim, Soo-Joong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.20-27
    • /
    • 1987
  • The hierarchical approach method is proposed to sperate each different time scale sub-systems from linear time invariant multi-parameter singular perturbation systems. By means of this proposal, the original multi-parameter singular perturbation systems is completely separated into independent subsystems with each different time scale. It is also investigated that the controllability of the system is invariant. And this paper applies singular perturbation methods to the minimum control effort problem for linear time invariant systems with constrained controls. Also near-optimum control theory, which is based on dividing the total time interval with the time scales respectively, is proposed. As a result, the time scale separation method is show to be particularly useful in a near optimum design which can be otained through a decentralized control structure.

  • PDF

Optimization of Multi-time Scale Loss Function Suitable for DNN-based Audio Coder (심층신경망 기반 오디오 부호화기를 위한 Multi-time Scale 손실함수의 최적화)

  • Shin, Seung-Min;Byun, Joon;Park, Young-Cheol;Beack, Seung-kwon;Sung, Jong-mo
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2022.06a
    • /
    • pp.1315-1317
    • /
    • 2022
  • 최근, 심층신경망 기반 오디오 부호화기가 활발히 연구되고 있다. 심층신경망 기반 오디오 부호화기는 기존의 전통적인 오디오 부호화기보다 구조적으로 간단하지만, 네트워크의 복잡도를 증가시키지 않고 인지적 성능향상을 기대하는 것은 어렵다. 이 문제를 해결하기 위하여 인간의 청각적 특성을 활용한 심리음향모델 기반 손실함수를 사용한 기법들이 소개되었다. 심리음향 모델 기반 손실함수를 사용한 오디오 부호화기는 양자화 잡음을 잘 제어하였지만, 여전히 지각적인 향상이 필요하다. 본 논문에서는 심층신경망 기반 오디오 부호화기를 위한 Multi-time Scale 손실함수의 지역 손실함수 윈도우 크기의 최적화 제안한다. Multi-time Scale 손실함수의 지역 손실함수 계산을 위한 윈도우 크기를 조절하며, 이를 통하여 오디오 부호화에 적합한 윈도우 사이즈를 결정한다. 실험을 통해 얻은 최적의 Multi-time Scale 손실함수를 사용하여 네트워크를 훈련하였고, 주관적 평가를 통해 기존의 심리음향모델 기반 손실함수보다 좋은 음성 품질을 보여주는 것을 확인하였다.

  • PDF

Characterizing Co-movements between Indian and Emerging Asian Equity Markets through Wavelet Multi-Scale Analysis

  • Shah, Aasif;Deo, Malabika;King, Wayne
    • East Asian Economic Review
    • /
    • v.19 no.2
    • /
    • pp.189-220
    • /
    • 2015
  • Multi-scale representations are effective in characterising the time-frequency characteristics of financial return series. They have the capability to reveal the properties not evident with typical time domain analysis. Given the aforesaid, this study derives crucial insights from multi scale analysis to investigate the co-movements between Indian and emerging Asian equity markets using wavelet correlation and wavelet coherence measures. It is reported that the Indian equity market is strongly integrated with Asian equity markets at lower frequency scales and relatively less blended at higher frequencies. On the other hand the results from cross correlations suggest that the lead-lag relationship becomes substantial as we turn to lower frequency scales and finally, wavelet coherence demonstrates that this correlation eventually grows strong in the interim of the crises period at lower frequency scales. Overall the findings are relevant and have strong policy and practical implications.

FPGA-Based Real-Time Multi-Scale Infrared Target Detection on Sky Background

  • Kim, Hun-Ki;Jang, Kyung-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.11
    • /
    • pp.31-38
    • /
    • 2016
  • In this paper, we propose multi-scale infrared target detection algorithm with varied filter size using integral image. Filter based target detection is widely used for small target detection, but it doesn't suit for large target detection depending on the filter size. When there are multi-scale targets on the sky background, detection filter with small filter size can not detect the whole shape of the large targe. In contrast, detection filter with large filter size doesn't suit for small target detection, but also it requires a large amount of processing time. The proposed algorithm integrates the filtering results of varied filter size for the detection of small and large targets. The proposed algorithm has good performance for both small and large target detection. Furthermore, the proposed algorithm requires a less processing time, since it use the integral image to make the mean images with different filter sizes for subtraction between the original image and the respective mean image. In addition, we propose the implementation of real-time embedded system using FPGA.

Time-varying physical parameter identification of shear type structures based on discrete wavelet transform

  • Wang, Chao;Ren, Wei-Xin;Wang, Zuo-Cai;Zhu, Hong-Ping
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.831-845
    • /
    • 2014
  • This paper proposed a discrete wavelet transform based method for time-varying physical parameter identification of shear type structures. The time-varying physical parameters are dispersed and expanded at multi-scale as profile and detail signal using discrete wavelet basis. To reduce the number of unknown quantity, the wavelet coefficients that reflect the detail signal are ignored by setting as zero value. Consequently, the time-varying parameter can be approximately estimated only using the scale coefficients that reflect the profile signal, and the identification task is transformed to an equivalent time-invariant scale coefficient estimation. The time-invariant scale coefficients can be simply estimated using regular least-squares methods, and then the original time-varying physical parameters can be reconstructed by using the identified time-invariant scale coefficients. To reduce the influence of the ill-posed problem of equation resolving caused by noise, the Tikhonov regularization method instead of regular least-squares method is used in the paper to estimate the scale coefficients. A two-story shear type frame structure with time-varying stiffness and damping are simulated to validate the effectiveness and accuracy of the proposed method. It is demonstrated that the identified time-varying stiffness is with a good accuracy, while the identified damping is sensitive to noise.

Multi-scale Modeling of Plasticity for Single Crystal Iron (단결정 철의 소성에 대한 멀티스케일 모델링)

  • Jeon, J.B.;Lee, B.J.;Chang, Y.W.
    • Transactions of Materials Processing
    • /
    • v.21 no.6
    • /
    • pp.366-371
    • /
    • 2012
  • Atomistic simulations have become useful tools for exploring new insights in materials science, but the length and time scale that can be handled with atomistic simulations are seriously limiting their practical applications. In order to make meaningful quantitative predictions, atomistic simulations are necessarily combined with higher-scale modeling. The present research is thus concerned with the development of a multi-scale model and its application to the prediction of the mechanical properties of body-centered cubic(BCC) iron with an emphasis on the coupling of atomistic molecular dynamics with meso-scale discrete dislocation dynamics modeling. In order to achieve predictive multi-scale simulations, it is necessary to properly incorporate atomistic details into the meso-scale approach. This challenge is handled with the proposed hierarchical information passing strategy from atomistic to meso-scale by obtaining material properties and dislocation mobility. Finally, this fundamental and physics-based meso-scale approach is employed for quantitative predictions of the mechanical response of single crystal iron.

Probabilistic Load Flow for Power Systems with Wind Power Considering the Multi-time Scale Dispatching Strategy

  • Qin, Chao;Yu, Yixin;Zeng, Yuan
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.4
    • /
    • pp.1494-1503
    • /
    • 2018
  • This paper proposes a novel probabilistic load flow model for power systems integrated with large-scale wind power, which considers the multi-time scale dispatching features. The ramp limitations of the units and the steady-state security constraints of the network have been comprehensively considered for the entire duration of the study period; thus, the coupling of the system operation states at different time sections has been taken into account. For each time section, the automatic generation control (AGC) strategy is considered, and all variations associated with the wind power and loads are compensated by all AGC units. Cumulants and the Gram-Charlier expansion are used to solve the proposed model. The effectiveness of the proposed method is validated using the modified IEEE RTS 24-bus system and the modified IEEE 118-bus system.

Strongly-coupled Finite Element Method Approach to Multi-scale Modelingof Polycrystalline Solids (유한요소법을 이용한 다결정 고체의 복합스케일 모델링)

  • Han Tong-Seok;Dawson Paul R.
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.531-534
    • /
    • 2006
  • A multi-scale (macro-micro) finite element framework for analysis of polycrystalline solids is suggested. The proposed frame work is strongly-coupled in a sense that the two scale calculation is performed at the same time. The issue of averaging micro-scale material stress and stiffness is addressed and a strategy is proposed. The proposed framework is implemented and applied to two examples having different geometries and loading modes. It is concluded that the proposed multi-scale framework can be used for more detailed and accurate analysis compared with the single-scale finite element analysis.

  • PDF

Pose Estimation with Binarized Multi-Scale Module

  • Choi, Yong-Gyun;Lee, Sukho
    • International journal of advanced smart convergence
    • /
    • v.7 no.2
    • /
    • pp.95-100
    • /
    • 2018
  • In this paper, we propose a binarized multi-scale module to accelerate the speed of the pose estimating deep neural network. Recently, deep learning is also used for fine-tuned tasks such as pose estimation. One of the best performing pose estimation methods is based on the usage of two neural networks where one computes the heat maps of the body parts and the other computes the part affinity fields between the body parts. However, the convolution filtering with a large kernel filter takes much time in this model. To accelerate the speed in this model, we propose to change the large kernel filters with binarized multi-scale modules. The large receptive field is captured by the multi-scale structure which also prevents the dropdown of the accuracy in the binarized module. The computation cost and number of parameters becomes small which results in increased speed performance.

Multi-factor Evolution for Large-scale Multi-objective Cloud Task Scheduling

  • Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1100-1122
    • /
    • 2023
  • Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.