• Title/Summary/Keyword: multi-robot transportation

Search Result 9, Processing Time 0.024 seconds

Distributed artificial capital market based planning in 3D multi-robot transportation

  • Akbarimajd, Adel;Simzan, Ghader
    • Advances in robotics research
    • /
    • v.1 no.2
    • /
    • pp.171-183
    • /
    • 2014
  • Distributed planning and decision making can be beneficial from the robustness, adaptability and fault tolerance in multi-robot systems. Distributed mechanisms have not been employed in three dimensional transportation systems namely aerial and underwater environments. This paper presents a distributed cooperation mechanism on multi robot transportation problem in three dimensional environments. The cooperation mechanism is based on artificial capital market, a newly introduced market based negotiation protocol. In the proposed mechanism contributing in transportation task is defined as asset. Each robot is considered as an investor who decides if he is going to invest on some assets. The decision is made based on environmental constraint including fuel limitation and distances those are modeled as capital and cost. Simulations show effectiveness of the algorithm in terms of robustness, speed and adaptability.

A combined auction mechanism for online instant planning in multi-robot transportation problem

  • Jonban, Mansour Selseleh;Akbarimajd, Adel;Hassanpour, Mohammad
    • Advances in robotics research
    • /
    • v.2 no.3
    • /
    • pp.247-257
    • /
    • 2018
  • Various studies have been performed to coordinate robots in transporting objects and different artificial intelligence algorithms have been considered in this field. In this paper, we investigate and solve Multi-Robot Transportation problem by using a combined auction algorithm. In this algorithm each robot, as an agent, can perform the auction and allocate tasks. This agent tries to clear the auction by studying different states to increase payoff function. The algorithm presented in this paper has been applied to a multi-robot system where robots are responsible for transporting objects. Using this algorithm, robots are able to improve their actions and decisions. To show the excellence of the proposed algorithm, its performance is compared with three heuristic algorithms by statistical simulation approach.

Task Allocation of Intelligent Warehouse Picking System based on Multi-robot Coalition

  • Xue, Fei;Tang, Hengliang;Su, Qinghua;Li, Tao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.7
    • /
    • pp.3566-3582
    • /
    • 2019
  • In intelligent warehouse picking system, the allocation of tasks has an important influence on the efficiency of the whole system because of the large number of robots and orders. The paper proposes a method to solve the task allocation problem that multi-robot task allocation problem is transformed into transportation problem to find a collision-free task allocation scheme and then improve the capability of task processing. The task time window and the power consumption of multi-robot (driving distance) are regarded as the utility function and the maximized utility function is the objective function. Then an integer programming formulation is constructed considering the number of task assignment on an agent according to their battery consumption restriction. The problem of task allocation is solved by table working method. Finally, simulation modeling of the methods based on table working method is carried out. Results show that the method has good performance and can improve the efficiency of the task execution.

Biomimetic Balancing Mechanism for Walking Robot (생체모사를 통한 보행로봇의 균형감에 관한 연구)

  • Kim, Jong Jin;Chung, Seong Youb
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.55-59
    • /
    • 2014
  • A cat is able to quickly recover balance from unstable posture. To observe the balance recovery procedure of the cat, an impulse is applied to the cat while walking on a narrow bridge. We find that it rotates its tail toward the falling direction. In our previous research, the balance recovery procedure is analyzed based on the law of the angular momentum conservation and then a key equation is derived to maintain the balance. However, it did not consider the gravity, so the performance is not good. In this paper, a new dynamic model is proposed using the Lagrangian mechanics. In the method, the gravity is included in the potential energy. Through the proposed dynamic model, controlling the balance of a walking robot is possible.

The Multi-legged Small Sized Robot Drive using Piezoelectric Benders (압전벤더를 이용한 소형 다족 로봇 구동원)

  • Park, Jong-man;Kim, Young-hyun;Jeong, Won-chan;Ryu, Jeong-min
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.444-449
    • /
    • 2020
  • I proposed small ambulatory robot actuators using piezoelectric benders. In order to make the motion of the biomimetic robot legs similar to the movements of the cockroaches or similar insects, two pairs of legs in the diagonal direction in the four leg structures are required to make the same movement. And elliptical displacement is realized by taking into account horizontal and vertical displacement of multimode oscillations and driving them by electrical signals with differences step by step, for example of 90° the T-shaped robot actuator showed wide range of speed (From 2 mm/sec. up to 266 mm/sec.) and ability of transportation (up to 10 g with 50 mm/s). Locomotive performance of the robot was competitive to the preceding robots, and moreover, the modular type actuators of a segmented myriapods robot could be added and removed for different tasks or performances.

Implementation of a Multi-Protocol Baseband Modem for RFID Reader (RFID Reader용 멀티 프로토콜 모뎀 설계)

  • Moon, Jeon-Il;Ki, Tae-Hun;Bae, Gyu-Sung;Kim, Jong-Bae
    • The Journal of Korea Robotics Society
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2009
  • Radio Frequency Identification (RFID) is an automatic identification method. Information such as identification, logistics history, and specification of products are written and stored into the memory of RFID tags (that is, transponders), and retrieved through RF communication between RFID reader device and RFID tags. RFID systems have been applied to many fields of transportation, industry, logistics, environment, etc in order to improve business efficiency and reduce maintenance cost as well. Recently, some research results are announced in which RFID devices are combined with other sensors for mobile robot localization. In this paper, design of multi-protocol baseband for RFID reader device is proposed, and the baseband modem is implemented into SoC (System On a Chip). The baseband modem SoC for multi-protocol RFID reader is composed of several IP (Intellectual Property) blocks such as multi-protocol blocks, CPU, UART(Universal Asynchronous Receiver and Transmitter), memory, etc. As a result, the SoC implemented with FPGA(Field Programmable Gate Array) is applied to real product. It is shown that the size of RFID Reader module designed with the FPGA becomes smaller, and the SoC chip price for the same function becomes cheap. In addition, operation performance could be the same or better than that of the product with no SoC applied.

  • PDF

Introduction to the Intelligent Excavating System: Concept design of Intuitive Operator Control Unit (지능형 굴삭시스템 개발: 직감형 원격제어 시스템 개념설계)

  • Yu, Byung-Gab;Lee, Seung-Yeol;Lee, Sang-Ho;Yu, Seok-Jong;Yu, Bo-Hyun;Jang, June-Hyun;Han, Chang-Soo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.68-73
    • /
    • 2007
  • Civil engineering construction work has always been accompanied by a high proportion of tasks that are either dangerous or unpleasant or both. Enhancing the general working environment and boosting safety levels are critical issues for the industry. In addition to that, the industry has been slow to utilize automation & robot technology, and there is substantial scope for the use of technology th boost efficiency, cut costs and improve quality levels in construction. In a bid to address this issue, Ministry of Construction & Transportation launched a five-year project in 2003 entitled Development of Intelligent Excavating System. The aim of the project is to use telecommunications and robotics technology to minimize inefficiencies and eliminate the dangerous and unpleasant aspects of tile construction process through the development of specific applications such as IT-equipped construction machinery and advanced construction management systems. In this paper, the project introduces on the research and development content related to multi-disciplinary, a intuitive operator control unit(Robot Technology) included.

  • PDF

Essential technical and intellectual abilities for autonomous mobile service medical robots

  • Rogatkin, Dmitry A.;Velikanov, Evgeniy V.
    • Advances in robotics research
    • /
    • v.2 no.1
    • /
    • pp.59-68
    • /
    • 2018
  • Autonomous mobile service medical robots (AMSMRs) are one of the promising developments in contemporary medical robotics. In this study, we consider the essential technical and intellectual abilities needed by AMSMRs. Based on expert analysis of the behavior exhibited by AMSMRs in clinics under basic scenarios, these robots can be classified as intellectual dynamic systems acting according to a situation in a multi-object and multi-agent environment. An AMSMR should identify different objects that define the presented territory (rooms and paths), different objects between and inside rooms (doors, tables, and beds, among others), and other robots. They should also identify the means for interacting with these objects, people and their speech, different information for communication, and small objects for transportation. These are included in the minimum set required to form the internal world model in an AMSMR. Recognizing door handles and opening doors are some of the most difficult problems for contemporary AMSMRs. The ability to recognize the meaning of human speech and actions and to assist them effectively are other problems that need solutions. These unresolved issues indicate that AMSMRs will need to pass through some learning and training programs before starting real work in hospitals.

Design of Multi-Sensor-Based Open Architecture Integrated Navigation System for Localization of UGV

  • Choi, Ji-Hoon;Oh, Sang Heon;Kim, Hyo Seok;Lee, Yong Woo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.35-43
    • /
    • 2012
  • The UGV is one of the special field robot developed for mine detection, surveillance and transportation. To achieve successfully the missions of the UGV, the accurate and reliable navigation data should be provided. This paper presents design and implementation of multi-sensor-based open architecture integrated navigation for localization of UGV. The presented architecture hierarchically classifies the integrated system into four layers and data communications between layers are based on the distributed object oriented middleware. The navigation manager determines the navigation mode with the QoS information of each navigation sensor and the integrated filter performs the navigation mode-based data fusion in the filtering process. Also, all navigation variables including the filter parameters and QoS of navigation data can be modified in GUI and consequently, the user can operate the integrated navigation system more usefully. The conventional GPS/INS integrated system does not guarantee the long-term reliability of localization when GPS solution is not available by signal blockage and intentional jamming in outdoor environment. The presented integration algorithm, however, based on the adaptive federated filter structure with FDI algorithm can integrate effectively the output of multi-sensor such as 3D LADAR, vision, odometer, magnetic compass and zero velocity to enhance the accuracy of localization result in the case that GPS is unavailable. The field test was carried out with the UGV and the test results show that the presented integrated navigation system can provide more robust and accurate localization performance than the conventional GPS/INS integrated system in outdoor environments.