• Title/Summary/Keyword: multi-point temperature monitoring

Search Result 14, Processing Time 0.026 seconds

Estimation of Hardened Layer Dimensions Using Multi-Point Temperature Monitoring in Laser Surface Hardening Processes (레이저 표면 경화 공정에서 다점 온도 모니터링을 통한 경화층 크기 예측)

  • 우현구
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1048-1054
    • /
    • 2003
  • In laser surface hardening processes, the geometrical parameters such as the depth and the width of a hardened layer can be utilized to assess the hardened layer quality. However, accurate monitoring of the geometrical parameters for on-line process control as well as for on-line quality evaluation is very difficult because the hardened layer is formed beneath a material surface and is not visible. Therefore, temperature monitoring of a point of specimen surface has most frequently been used as a process monitoring method. But, a hardened layer depends on the temperature distribution and the thermal history of a specimen during laser surface hardening processing. So, this paper describes the estimation results of the geometric parameters using multi-point surface temperature monitoring. A series of hardening experiments were performed to find the relationships between the geometric parameters and the measured temperature. Estimation results using a neural network show the enhanced effectiveness of multi-point surface temperature monitoring compared to one-point monitoring.

The Study on the Monitoring of Temperature and Humidity in Public Utilization Facilities (다중 이용 시설에 대한 온.습도 모니터링에 관한 연구)

  • Choi, Man-Yong;Chae, Kyung-Hee;Kim, Ki-Bok;Kim, Su-Un
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.1470-1475
    • /
    • 2009
  • Until now for the safety of structures and equipment monitoring technology to measure the amount of the physical, if that is the one, one-point or single-source target is one the most. Therefore, becoming more numerous and complex to measure the amount of physical measurement technology that is comprehensive and complex, multi-source concepts to the monitoring of a multi-sensing technology is required. Have the same characteristics of multi-source multi-use space such as a multi-structure of facilities/equipment is. The people's safety in a multi-use facility will be directly related to life and even a little carelessness can lead to large-scale disaster occurs because of several factors, risks and to manage detect in advance the development of an intelligent monitoring technology is essential. Therefore, this study shows that multiple structures/facilities to improve the quality of human life in research to maintain a safe and comfortable living space for multi-source intelligence to the development of monitoring technology to achieve that goal, and the ubiquitous sensor network system on the basis of the wireless transmission module, and multiple research facilities/equipment for the ultra-small sensors for health monitoring study was performed.

  • PDF

Injection Mold Technology of Protein Chip for Point-of-Care (현장진단용 단백질 칩 사출금형기술)

  • Lee, Sung-Hee;Ko, Young-Bae;Lee, Jong-Won;Jung, Hae-Chul;Park, Jae-Hyun;Lee, Ok-Sung
    • Design & Manufacturing
    • /
    • v.6 no.2
    • /
    • pp.74-78
    • /
    • 2012
  • A multi-cavity injection mold system of protein chip for point-of-care with cavity temperature and pressure sensors was proposed in this work. In advance of manufacturing for the multi-cavity injection mold system, a single cavity injection mold system to mold protein chip was considered. Injection molding analysis for the presented system was performed to optimize the process of the molding and suggest guides to design. On the basis of the results for the single cavity system, a multi-cavity injection mold system for protein chip was analyzed, designed and manufactured with cavity temperature and pressure sensors. Results of balanced filling for protein chip models were obtained from the presented mold system.

  • PDF

Evaluating Reliability of Rooftop Thermal Infrared Image Acquired at Oblique Vantage Point of Super High-rise Building (초고층건물의 사각조망에서 촬영된 지붕표면 열화상의 신뢰도 평가)

  • Ryu, Taek-Hyoung;Um, Jung-Sup
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.51-59
    • /
    • 2013
  • It is usual to evaluate the performance of the cool roof by measuring in-site rooftop temperature using thermal infra-red camera. The principal advantage of rooftop thermal infrared image acquired in oblique vantage point of super high-rise building as a remote sensor is to provide, in a cost-effective manner, area-wide information required for a scattered rooftop target with different colors, utilizing wide view angle and multi-temporal data coverage. This research idea was formulated by incorporating the concept of traditional remote sensing into rooftop temperature monitoring. Correlations between infrared image of super high-rise building and in-situ data were investigated to compare rooftop surface temperature for a total of four different rooftop locations. The results of the correlations analyses indicate that the rooftop surface temperature by the infrared images of super high-rise building alone could be explained yielding $R^2$ values of 0.951. The visible permanent record of the oblique thermal infra-red image was quite useful in better understanding the nature and extent of rooftop color that occurs in sampling points. This thermal infrared image acquired in oblique vantage point of super high-rise made it possible to identify area wide patterns of rooftop temperature change subject to many different colors, which cannot be acquired by traditional in-site field sampling. The infrared image of super high-rise building breaks down the usual concept of field sampling established as a conventional cool roof performance evaluation technique.

The study of environmental monitoring by science airship and high accuracy digital multi-spectral camera

  • Choi, Chul-Uong;Kim, Young-Seop;Nam, Kwang-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.750-750
    • /
    • 2002
  • The Airship PKNU is a roughly 12 m (32 ft) long blimp, filled with helium, whose two-gasoline power(3hp per engine) are independently radio controlled. The motors and propellers can be tilted and are attached to the gondola through an axle and supporting braces. Four stabilizing fins are mounted at the tail of the airship. To fill in the helium, a valve is placed at the bottom of the hull. The inaugural flight was on jul. 31.2002 at the Pusan, S.korea Most environment monitoring system\ problem use satellite image. But, Low resolution satellite image (multi-spectral) : 1km ∼ 250 m ground resolutions is lows. So, detail information acquisition is hard at the complex terrain. High resolution satellite image (black and white) 30m : The ground resolution is high. But it is high price, visit cycle and delivery time is long So. We want make high accuracy airship photogrammetry system. This airship can catch picture Multi. spectral Aerial photographing (visible, Near infrared and thermal infrared), and High resolution (over 6million pixel). It can take atmosphere datum (Temperature (wet bulb, dew point, general), Pressure (static, dynamic), Humidity, wind speed). this airship is very Quickness that aircraft install time is lower than 30 minutes, it is compact and that conveyance is easy. High-capacity save image (628 cut per 1time (over 6million and 4band(R,G,B,NIR)) and this airship can save datum this High accuracy navigatin (position and rotate angle) by DGPS tech. and Gyro system. this airship will do monitor about red-tide, sea surface temperate, and CH-A, SS and etc.

  • PDF

A Study on the Sensor Network Technology for Blood Management System (혈액관리 시스템을 위한 센서 네트워크 기술에 대한 연구)

  • Lee, Min-Goo;Kang, Jung-Hoon;Lim, Ho-Jung;Yoon, Myung-Hyun;Yoo, Jun-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.162-164
    • /
    • 2006
  • This whitepaper is a research about the sensor network technology which enhance the performance of the blood management system. The problem of measuring and monitoring the real time temperature of a every point in a limited environment let us to develop a system which is able to monitor the temperature of a remote area using multi-hop networking technology. This whitepaper propose the error correction technologies, which were used to eliminate problems that might occur during real tests of the system.

  • PDF

Monitoring of Internal Harmful Factors According to Environmental Factors in Pig Farm (양돈장 내의 환경 요인에 따른 내부 유해인자의 변동 모니터링)

  • Lee, Seong-Won;Kim, Hyo-Cher;Seo, Il-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.105-115
    • /
    • 2020
  • With the decrease of the agricultural population in Korea, the workers who is vulnerable to labor are increasing in agricultural industry because of aging, feminization of population. They are exposed in poor working environment with higher temperature and concentrations of dust, gas. Higher concentration of harmful gas and dust can cause chronic and acute disease to workers depending on exposure intensity and frequency. In order to improve the working environment in the livestock facilities, It is important to secure monitoring data of the thermal environment and the concentration of harmful gases and fine dust. Multi-point measurement was performed to analyze the regional environmental conditions in the pig rooms. When analyzing the working environment, video monitoring was conducted to analyze the concentration changes of ammonia, hydrogen sulfide and fine dust according to worker movement and work type. Ammonia and hydrogen sulfide monitoring result showed 1.5~2 times higher concentrations than other work when working in the pigs living zone, and 2~4 times higher than other work when working to increase the activity of pigs. In the case of fine dust, the result was 1.3 times higher than the worker's exposure standard in a specific work. The concentrations of gases and dusts from pig farms are not of concern for acute poisoning in normal work, but there is a risk of chronic respiratory disease if they are continuously exposed. Accordingly, there is a need for development of work environment monitoring device tailored to workers and preparation of alternatives.

Indoor Temperature Analysis by Point According to Facility Operation of IoT-based Vertical Smart Farm (IoT 기반 수직형 스마트 팜의 설비운영에 따른 지점별 실내온도분석)

  • Kim, Handon;Jung, Mincheol;Oh, Donggeun;Cho, Hyunsang;Choi, Seun;Jang, Hyounseung;Kim, Jimin
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.1
    • /
    • pp.98-105
    • /
    • 2022
  • It is essential for vertical smart farms that artificially grow crops in an enclosed space to properly utilize air environment facilities to create an appropriate growth environment. However, domestic vertical smart farm companies are creating a growing environment by relying on empirical data rather than systematic methods. Using IoT to create a growing environment based on systematic and precise monitoring can increase crop production yield and maximize profitability. This study aims to construct a monitoring system using IoT and to analyze the cause by demonstrating the imbalance of temperature environment, which is a significant factor in crop cultivation. 1) The horizontal temperature distribution of the multi-layer shelf was measured with different operating methods of LED and air conditioner. As a result, there was a temperature difference of "up to 1.7℃" between the sensors. 2) As a result of measuring the vertical temperature distribution, the temperature difference was "up to 6.3℃". In order to reduce this temperature gap, a strategy for proper arrangement and operation of air conditioning equipment is required.

A Review of EOS Thermal Control Logic for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Youn H.S.;Paik H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.452-455
    • /
    • 2004
  • MSC (Multi-Spectral Camera) system is a remote sensing instrument to obtain high resolution ground image. EOS (Electro-Optic System) for MSC mainly consists of PMA (Primary Mirror Assembly), SMA (Secondary Mirror Assembly), HSTS (High Stability Telescope Structure) and DFPA (Detector Focal Plane Assembly). High performance of EOS makes it possible for MSC system to provide high resolution and high quality ground images. Temperature of the EOS needs to be controlled to be in a specific range in order not to have any thermal distortion which can cause performance degradation. It is controlled by full redundant CPU based electronics. The validity of thermistor readings can be checked because a few thermistors are installed on each control point on EOS. Various kinds of thermal control logics are used to prevent 'Single Point Failure'. Control logic has a few set of database in order not to be corrupted by SEU (Single Event Upset). Even though the thermal control logic is working automatically, it can also be monitored and controlled by ground-station operator. In this paper, various ways of thermal control logic for EOS in MSC will be presented, which include thermal control mode and logic, redundancy design and status monitoring and reporting scheme.

  • PDF

Implementation of Flooding Routing Protocol for Field sever using Weather Monitoring System (국지기상 모니터링용 필드서버를 위한 플러딩 라우팅 프로토콜의 구현)

  • Yoo, Jae-Ho;Lee, Seung-Chul;Chung, Wan-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.1
    • /
    • pp.233-240
    • /
    • 2011
  • A field server was developed by using ubiquitous sensor network technology to monitor the abrupt weather variation in local or mountain area. The data transmissions between deployed field servers in local terrain are very important technology in disaster prevention monitoring system. Weather related information such as temperature, humidity, illumination, atmospheric pressure, dew point and meteorological data are collected from the designated field at a regular interval. The received information from the multiple sensors located at the sensor field is used flooding routing protocol transmission techniques and the sensing data is transferred to gateway through multi-hop method. Telosb sensor node are programmed by nesC language in TinyOS platform to monitor the weather parameters of the local terrain.