• Title/Summary/Keyword: multi-perceptron

Search Result 474, Processing Time 0.03 seconds

Comparative Analysis of Effective Algorithm Techniques for the Detection of Syn Flooding Attacks (Syn Flooding 탐지를 위한 효과적인 알고리즘 기법 비교 분석)

  • Jong-Min Kim;Hong-Ki Kim;Joon-Hyung Lee
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.73-79
    • /
    • 2023
  • Cyber threats are evolving and becoming more sophisticated with the development of new technologies, and consequently the number of service failures caused by DDoS attacks are continually increasing. Recently, DDoS attacks have numerous types of service failures by applying a large amount of traffic to the domain address of a specific service or server. In this paper, after generating the data of the Syn Flooding attack, which is the representative attack type of bandwidth exhaustion attack, the data were compared and analyzed using Random Forest, Decision Tree, Multi-Layer Perceptron, and KNN algorithms for the effective detection of attacks, and the optimal algorithm was derived. Based on this result, it will be useful to use as a technique for the detection policy of Syn Flooding attacks.

A Novel Feature Selection Approach to Classify Breast Cancer Drug using Optimized Grey Wolf Algorithm

  • Shobana, G.;Priya, N.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.9
    • /
    • pp.258-270
    • /
    • 2022
  • Cancer has become a common disease for the past two decades throughout the globe and there is significant increase of cancer among women. Breast cancer and ovarian cancers are more prevalent among women. Majority of the patients approach the physicians only during their final stage of the disease. Early diagnosis of cancer remains a great challenge for the researchers. Although several drugs are being synthesized very often, their multi-benefits are less investigated. With millions of drugs synthesized and their data are accessible through open repositories. Drug repurposing can be done using machine learning techniques. We propose a feature selection technique in this paper, which is novel that generates multiple populations for the grey wolf algorithm and classifies breast cancer drugs efficiently. Leukemia drug dataset is also investigated and Multilayer perceptron achieved 96% prediction accuracy. Three supervised machine learning algorithms namely Random Forest classifier, Multilayer Perceptron and Support Vector Machine models were applied and Multilayer perceptron had higher accuracy rate of 97.7% for breast cancer drug classification.

Prediction of Slope Failure Arc Using Multilayer Perceptron (다층 퍼셉트론 신경망을 이용한 사면원호 파괴 예측)

  • Ma, Jeehoon;Yun, Tae Sup
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.39-52
    • /
    • 2022
  • Multilayer perceptron neural network was trained to determine the factor of safety and slip surface of the slope. Slope geometry is a simple slope based on Korean design standards, and the case of dry and existing groundwater levels are both considered, and the properties of the soil composing the slope are considered to be sandy soil including fine particles. When curating the data required for model training, slope stability analysis was performed in 42,000 cases using the limit equilibrium method. Steady-state seepage analysis of groundwater was also performed, and the results generated were applied to slope stability analysis. Results show that the multilayer perceptron model can predict the factor of safety and failure arc with high performance when the slope's physical properties data are input. A method for quantitative validation of the model performance is presented.

Driver face localization using morphological analysis and multi-layer preceptron as a skin-color model (형태분석과 피부색모델을 다층 퍼셉트론으로 사용한 운전자 얼굴추출 기법)

  • Lee, Jong-Soo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.4
    • /
    • pp.249-254
    • /
    • 2013
  • In the area of computer vision, face recognition is being intensively researched. It is generally known that before a face is recognized it must be localized. Skin-color information is an important feature to segment skin-color regions. To extract skin-color regions the skin-color model based on multi-layer perceptron has been proposed. Extracted regions are analyzed to emphasize ellipsoidal regions. The results from this study show good accuracy for our vehicle driver face detection system.

A Study on Application of the Multi-layor Perceptron to the Human Sensibility Classifier with Eletroencephalogram (뇌파의 감성 분류기로서 다층 퍼셉트론의 활용에 관한 연구)

  • Kim, Dong Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1506-1511
    • /
    • 2018
  • This study presents a human sensibility evaluation method using neural network and multiple-template method on electroencephalogram(EEG). We used a multi-layer perceptron type neural network as the sensibility classifier using EEG signal. For our research objective, 10-channel EEG signals are collected from the healthy subjects. After the necessary preprocessing is performed on the acquired signals, the various EEG parameters are estimated and their discriminating performance is evaluated in terms of pattern classification capability. In our study, Linear Prediction(LP) coefficients are utilized as the feature parameters extracting the characteristics of EEG signal, and a multi-layer neural network is used for indicating the degree of human sensibility. Also, the estimation for human comfortableness is performed by varying temperature and humidity environment factors and our results showed that the proposed scheme achieved good performances for evaluation of human sensibility.

Hybrid Multi-layer Perceptron with Fuzzy Set-based PNs with the Aid of Symbolic Coding Genetic Algorithms

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.155-157
    • /
    • 2005
  • We propose a new category of hybrid multi-layer neural networks with hetero nodes such as Fuzzy Set based Polynomial Neurons (FSPNs) and Polynomial Neurons (PNs). These networks are based on a genetically optimized multi-layer perceptron. We develop a comprehensive design methodology involving mechanisms of genetic optimization and genetic algorithms, in particular. The augmented genetically optimized HFPNN (namely gHFPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of HFPNN leads to the selection of preferred nodes (FPNs or PNs) available within the HFPNN. In the sequel, two general optimization mechanisms are explored. First, the structural optimization is realized via GAs whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFPNNs quantified through experimentation where we use a number of modeling benchmarks-synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

  • PDF

Experiments on the Novelty Detection Capability of Auto-Associative Multi-Layer Perceptron (자기연상 다층퍼셉트론의 이상 탐지 성능에 대한 실험)

  • Lee Hyeong Ju;Hwang Byeong Ho;Jo Seong Jun
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.632-638
    • /
    • 2002
  • In novelty detection, one attempts to discriminate abnormal patterns from normal ones. Novelty detection is quite difficult since, unlike usual two class classification problems, only normal patterns are available for training. Auto-Associative Multi-Layer Perceptron (AAMLP) has been shown to provide a good performance based upon the property that novel patterns usually have larger auto-associative errors. In this paper, we give a mathematical analysis of 2-layer AAMLP's output characteristics and empirical results of 2-layer and 4-layer AAMLPs. Various activation functions such as linear, saturated linear and sigmoid are compared. The 2-layer AAMLPs cannot identify non-linear boundaries while the 4-layer ones can. When the data distribution is multi-modal, then an ensemble of AAMLPs, each of which is trained with pre-clustered data is required. This paper contributes to understanding of AAMLP networks and leads to practical recommendations regarding its use.

  • PDF

Predicting the indirect tensile strength of self-compacting concrete using artificial neural networks

  • Mazloom, Moosa;Yoosefi, M.M.
    • Computers and Concrete
    • /
    • v.12 no.3
    • /
    • pp.285-301
    • /
    • 2013
  • This paper concentrates on the results of experimental work on tensile strength of self-compacting concrete (SCC) caused by flexure, which is called rupture modulus. The work focused on concrete mixes having water/binder ratios of 0.35 and 0.45, which contained constant total binder contents of 500 $kg/m^3$ and 400 $kg/m^3$, respectively. The concrete mixes had four different dosages of a superplasticizer based on polycarboxylic with and without silica fume. The percentage of silica fume that replaced cement in this research was 10%. Based upon the experimental results, the existing equations for anticipating the rupture modulus of SCC according to its compressive strength were not exact enough. Therefore, it is decided to use artificial neural networks (ANN) for anticipating the rupture modulus of SCC from its compressive strength and workability. The conclusion was that the multi layer perceptron (MLP) networks could predict the tensile strength in all conditions, but radial basis (RB) networks were not exact enough in some circumstances. On the other hand, RB networks were more users friendly and they converged to the final networks quicker.

Improving the Water Level Prediction of Multi-Layer Perceptron with a Modified Error Function

  • Oh, Sang-Hoon
    • International Journal of Contents
    • /
    • v.13 no.4
    • /
    • pp.23-28
    • /
    • 2017
  • Of the total economic loss caused by disasters, 40% are due to floods and floods have a severe impact on human health and life. So, it is important to monitor the water level of a river and to issue a flood warning during unfavorable circumstances. In this paper, we propose a modified error function to improve a hydrological modeling using a multi-layer perceptron (MLP) neural network. When MLP's are trained to minimize the conventional mean-squared error function, the prediction performance is poor because MLP's are highly tunned to training data. Our goal is achieved by preventing overspecialization to training data, which is the main reason for performance degradation for rare or test data. Based on the modified error function, an MLP is trained to predict the water level with rainfall data at upper reaches. Through simulations to predict the water level of Nakdong River near a UNESCO World Heritage Site "Hahoe Village," we verified that the prediction performance of MLP with the modified error function is superior to that with the conventional mean-squared error function, especially maximum error of 40.85cm vs. 55.51cm.

Particulate Matter AQI Index Prediction using Multi-Layer Perceptron Network (다층 퍼셉트론 신경망을 이용한 미세먼지 AQI 지수 예측)

  • Cho, Kyoung-woo;Lee, Jong-sung;Oh, Chang-heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.540-542
    • /
    • 2019
  • With many announcements on air pollution and human effects from particulate matters, particulate matter forecasts are attracting a lot of public attention. As a result, various efforts have been made to increase the accuracy of particulate matter forecasting by using statistical modeling and machine learning technique. In this paper, the particulate matter AQI index prediction is performed using the multilayer perceptron neural network for particulate matter prediction. For this purpose, a prediction model is designed by using the meteorological factors and particulate matter concentration values commonly used in a number of studies, and the accuracy of the particulate matter AQI prediction is compared.

  • PDF