• 제목/요약/키워드: multi-omics data

검색결과 18건 처리시간 0.03초

인체 유래 환경유해물질 노출에 따른 멀티 오믹스 데이터 통합 분석 가시화 시스템 (Visualization for Integrated Analysis of Multi-Omics Data by Harmful Substances Exposed to Human)

  • 신가희;홍지만;박서우;강병철;이봉문
    • 한국멀티미디어학회논문지
    • /
    • 제25권2호
    • /
    • pp.363-373
    • /
    • 2022
  • Multi-omics data is difficult to interpret due to the heterogeneity of information by the volume of data, the complexity of characteristics of each data, and the diversity of omics platforms. There is not yet a system for interpreting to visualize research data on environmental diseases concerning environmental harmful substances. We provide MEE, a web-based visualization tool, to comprehensively explore the complexity of data due to the interconnected characteristics of high-dimensional data sets according to exposure to various environmental harmful substances. MEE visualizes omics data of correlation between omics data, subjects and samples by keyword searches of meta data, multi-omics data, and harmful substances. MEE has been demonstrated the versatility by two examples. We confirmed the correlation between smoking and asthma with RNA-seq and Methylation-Chip data, it was visualized that genes (P HACTR3, PXDN, QZMB, SOCS3 etc.) significantly related to autoimmune or inflammatory diseases. To visualize the correlation between atopic dermatitis and heavy metals, we selected 32 genes related immune response by integrated analysis of multi-omics data. However, it did not show a significant correlation between mercury in blood and atopic dermatitis. In the future, should continuously collect an appropriate level of multi-omics data in MEE system, will obtain data to analyze environmental substances and diseases.

Single-Cell Sequencing in Cancer: Recent Applications to Immunogenomics and Multi-omics Tools

  • Sierant, Michael C.;Choi, Jungmin
    • Genomics & Informatics
    • /
    • 제16권4호
    • /
    • pp.17.1-17.6
    • /
    • 2018
  • Tumor heterogeneity, the cellular mosaic of multiple lineages arising from the process of clonal evolution, has continued to thwart multi-omics analyses using traditional bulk sequencing methods. The application of single-cell sequencing, in concert with existing genomics methods, has enabled high-resolution interrogation of the genome, transcriptome, epigenome, and proteome. Applied to cancers, these single-cell multi-omics methods bypass previous limitations on data resolution and have enabled a more nuanced understanding of the evolutionary dynamics of tumor progression, immune evasion, metastasis, and treatment resistance. This review details the growing number of novel single-cell multi-omics methods applied to tumors and further discusses recent discoveries emerging from these approaches, especially in regard to immunotherapy.

Association of the TREML2 and HTR1E Genetic Polymorphisms with Osteoporosis

  • Jung, Dongju;Jin, Hyun-Seok
    • 대한의생명과학회지
    • /
    • 제21권4호
    • /
    • pp.181-187
    • /
    • 2015
  • Osteoporosis is one of the diseases caused by accumulation of effects from complex interactions between genetic and environmental factors. Aging is the major cause for osteoporosis, which normally increases skeletal fragility and bone fracture especially among the elder. "Omics" refers to a specialized research field dealing with high-throughput biological data, such as genomics, transcriptomics, proteomics or metabolomics. Integration of data from multi-omics has been approved to be a powerful strategy to colligate biological phenomenon with multiple aspects. Actually, integrative analyses of "omics" datasets were used to present pathogenesis of specific diseases or casual biomarkers including susceptible genes. In this study, we evaluated the proposed relationship of novel susceptible genes (TREML2, HTR1E, and GLO1) with osteoporosis, which genes were obtained using multi-omics integration analyses. To this end, SNPs of the susceptible genes in the Korean female cohort were analyzed. As a result, one SNP of HTR1E and five SNPs of TREML2 were identified to associate with osteoporosis. The highest significant SNP was $rs6938076^*$ of TREML2 (OR=0.63, CI: 0.45~0.89, recessive P=0.009). Consequently, the susceptible genes identified through the multi-omics analyses were confirmed to have association with osteoporosis. Therefore, multi-omics analysis might be a powerful tool to find new genes associated with a disease. We further identified that TREML2 has more associated with osteoporosis in females than did HTR1E.

Multi-omics integration strategies for animal epigenetic studies - A review

  • Kim, Do-Young;Kim, Jun-Mo
    • Animal Bioscience
    • /
    • 제34권8호
    • /
    • pp.1271-1282
    • /
    • 2021
  • Genome-wide studies provide considerable insights into the genetic background of animals; however, the inheritance of several heritable factors cannot be elucidated. Epigenetics explains these heritabilities, including those of genes influenced by environmental factors. Knowledge of the mechanisms underlying epigenetics enables understanding the processes of gene regulation through interactions with the environment. Recently developed next-generation sequencing (NGS) technologies help understand the interactional changes in epigenetic mechanisms. There are large sets of NGS data available; however, the integrative data analysis approaches still have limitations with regard to reliably interpreting the epigenetic changes. This review focuses on the epigenetic mechanisms and profiling methods and multi-omics integration methods that can provide comprehensive biological insights in animal genetic studies.

Establishment of the large-scale longitudinal multi-omics dataset in COVID-19 patients: data profile and biospecimen

  • Jo, Hye-Yeong;Kim, Sang Cheol;Ahn, Do-hwan;Lee, Siyoung;Chang, Se-Hyun;Jung, So-Young;Kim, Young-Jin;Kim, Eugene;Kim, Jung-Eun;Kim, Yeon-Sook;Park, Woong-Yang;Cho, Nam-Hyuk;Park, Donghyun;Lee, Ju-Hee;Park, Hyun-Young
    • BMB Reports
    • /
    • 제55권9호
    • /
    • pp.465-471
    • /
    • 2022
  • Understanding and monitoring virus-mediated infections has gained importance since the global outbreak of the coronavirus disease 2019 (COVID-19) pandemic. Studies of high-throughput omics-based immune profiling of COVID-19 patients can help manage the current pandemic and future virus-mediated pandemics. Although COVID-19 is being studied since past 2 years, detailed mechanisms of the initial induction of dynamic immune responses or the molecular mechanisms that characterize disease progression remains unclear. This study involved comprehensively collected biospecimens and longitudinal multi-omics data of 300 COVID-19 patients and 120 healthy controls, including whole genome sequencing (WGS), single-cell RNA sequencing combined with T cell receptor (TCR) and B cell receptor (BCR) sequencing (scRNA(+scTCR/BCR)-seq), bulk BCR and TCR sequencing (bulk TCR/BCR-seq), and cytokine profiling. Clinical data were also collected from hospitalized COVID-19 patients, and HLA typing, laboratory characteristics, and COVID-19 viral genome sequencing were performed during the initial diagnosis. The entire set of biospecimens and multi-omics data generated in this project can be accessed by researchers from the National Biobank of Korea with prior approval. This distribution of large-scale multi-omics data of COVID-19 patients can facilitate the understanding of biological crosstalk involved in COVID-19 infection and contribute to the development of potential methodologies for its diagnosis and treatment.

Advances in Systems Biology Approaches for Autoimmune Diseases

  • Kim, Ho-Youn;Kim, Hae-Rim;Lee, Sang-Heon
    • IMMUNE NETWORK
    • /
    • 제14권2호
    • /
    • pp.73-80
    • /
    • 2014
  • Because autoimmune diseases (AIDs) result from a complex combination of genetic and epigenetic factors, as well as an altered immune response to endogenous or exogenous antigens, systems biology approaches have been widely applied. The use of multi-omics approaches, including blood transcriptomics, genomics, epigenetics, proteomics, and metabolomics, not only allow for the discovery of a number of biomarkers but also will provide new directions for further translational AIDs applications. Systems biology approaches rely on high-throughput techniques with data analysis platforms that leverage the assessment of genes, proteins, metabolites, and network analysis of complex biologic or pathways implicated in specific AID conditions. To facilitate the discovery of validated and qualified biomarkers, better-coordinated multi-omics approaches and standardized translational research, in combination with the skills of biologists, clinicians, engineers, and bioinformaticians, are required.

Estimation of high-dimensional sparse cross correlation matrix

  • Yin, Cao;Kwangok, Seo;Soohyun, Ahn;Johan, Lim
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.655-664
    • /
    • 2022
  • On the motivation by an integrative study of multi-omics data, we are interested in estimating the structure of the sparse cross correlation matrix of two high-dimensional random vectors. We rewrite the problem as a multiple testing problem and propose a new method to estimate the sparse structure of the cross correlation matrix. To do so, we test the correlation coefficients simultaneously and threshold the correlation coefficients by controlling FRD at a predetermined level α. Further, we apply the proposed method and an alternative adaptive thresholding procedure by Cai and Liu (2016) to the integrative analysis of the protein expression data (X) and the mRNA expression data (Y) in TCGA breast cancer cohort. By varying the FDR level α, we show that the new procedure is consistently more efficient in estimating the sparse structure of cross correlation matrix than the alternative one.

Network Analysis in Systems Epidemiology

  • Park, JooYong;Choi, Jaesung;Choi, Ji-Yeob
    • Journal of Preventive Medicine and Public Health
    • /
    • 제54권4호
    • /
    • pp.259-264
    • /
    • 2021
  • Traditional epidemiological studies have identified a number of risk factors for various diseases using regression-based methods that examine the association between an exposure and an outcome (i.e., one-to-one correspondences). One of the major limitations of this approach is the "black-box" aspect of the analysis, in the sense that this approach cannot fully explain complex relationships such as biological pathways. With high-throughput data in current epidemiology, comprehensive analyses are needed. The network approach can help to integrate multi-omics data, visualize their interactions or relationships, and make inferences in the context of biological mechanisms. This review aims to introduce network analysis for systems epidemiology, its procedures, and how to interpret its findings.

멀티 오믹스 데이터 및 생물학적 네트워크 정보를 이용한 드라이버 유전자 분류 (Cancer driver gene using multi-omics data and biological network information)

  • 박정호;조겨리
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 춘계학술발표대회
    • /
    • pp.490-492
    • /
    • 2023
  • 시퀀싱(sequencing) 기술의 발달로 다양한 오믹스(omics) 데이터의 축적과 인공 지능 기술의 발달로 인하여 다양한 드라이버 유전자 분류기법이 제안되어왔다. 최근에는 암 데이터가 대용량으로 축적되며 기계 학습 기반의 다양한 기법들이 활발히 제안되었다. 특히 다양한 오믹스 데이터를 결합한 고차원 데이터에서 높은 정확도를 확보하기 위한 시도가 활발히 이루어지고 있다. 본 논문에서는 멀티 오믹스와 네트워크 관련 특징을 기반으로 암의 증식 및 발생에 중요한 역할을 하는 드라이버 유전자를 분류하는 딥러닝 모델을 제시한다. 또한 The Cancer Genome Atlas(TCGA) 데이터를 통해서 모델 학습 후 기존 통계 및 머신러닝 기반 기법과 비교하여 성능이 개선되었음을 확인하였다.

식품분야에서 Iipidomics 분석 기술의 활용 (Application of Iipidomics in food science)

  • 김현진;장광주;이현정;김보민;오주홍
    • 식품과학과 산업
    • /
    • 제50권1호
    • /
    • pp.16-25
    • /
    • 2017
  • There is no doubt that accumulation of big data using multi-omics technologies will be useful to solve human's long-standing problems such as development of personalized diet and medicine, overcoming diseases, and longevity. However, in the food industry, big data based on omics is scarcely accumulated. In particular, comprehensive analysis of molecular lipid metabolites directly associated with food quality, such as taste, flavor, and texture has been very limited. Moreover, most of food lipidomics studies are applied to analyze lipid components and discriminate authenticity and freshness of limited foods including vegetable and fish oil. However, if lipid big data through food lipidomics research of various foods and materials can be accumulated, lipidomics can be used in the optimization of food processing, production, delivery system, food safety, and storage as well as functional food.