Acknowledgement
This research was supported by the National Research Foundation of Korea (NRF-2019R1F1A1056779).
References
- Benjamini Y and Hochberg Y (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing, Journal of the Royal Statistical Society, Series B, 57, 289-300.
- Benjamini Y and Yekutieli D (2001). The control of the false discovery rate in multiple testing under dependency, The Annals of Statistics, 29, 1165-1188. https://doi.org/10.1214/aos/1013699998
- Bennett CM, Wolford GL, and Miller MB (2009). The principled control of false positives in neuroimaging, Social Cognitive and Affecive Neuroscience, 4, 417-422. https://doi.org/10.1093/scan/nsp053
- Bickel P and Levina E (2008). Covariance regularization by thresholding, The Annals of Statistics, 36, 2577-2604. https://doi.org/10.1214/08-AOS600
- Cai T and Liu W (2011). Adaptive thresholding for sparse covariance matrix estimation, Journal of the American Statistical Association, 106, 672-684. https://doi.org/10.1198/jasa.2011.tm10560
- Cai T and Liu W (2016). Large-scale multiple testing of correlations, Journal of the American Statistical Association, 111, 229-240. https://doi.org/10.1080/01621459.2014.999157
- Cheng J, Kapranov P, Drenkow J, and Dike S (2005). Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution, Science, 308, 1149-1154. https://doi.org/10.1126/science.1108625
- Dubois PC, Trynka G, Franke L et al. (2010).Multiple common variants for celiac disease influencing immune gene expression, Nature Genetics, 42, 295-302. https://doi.org/10.1038/ng.543
- Efron B and Tibshirani R (2002). Empirical Bayes methods and false discovery rates for microarrays, Genetic Epidemiology, 23, 70-86. https://doi.org/10.1002/gepi.1124
- Efron B (2004). Large-scale simultaneous hypothesis testing: The choice of a null hypothesis, Journal of the American Statistical Association, 99, 96-104. https://doi.org/10.1198/016214504000000089
- Elliott P and Wartenberg D (2004). Review spatial epidemiology: Current approaches and future challenges, Environmental Health Perspectives, 112, 998-1006. https://doi.org/10.1289/ehp.6735
- Fan J, Fan Y, and Lv J (2008). High dimensional covariance matrix estimation using a factor model, Journal of Econometrics, 147, 186-197. https://doi.org/10.1016/j.jeconom.2008.09.017
- Fan J, Han X, and Gu W (2012). Estimating false discovery proportion under arbitrary covariance dependence, Journal of the American Statistical Association, 107, 1019-1035. https://doi.org/10.1080/01621459.2012.720478
- Han H, Shim H, Shin D, et al. (2015). TRRUST: A reference database of human transcriptional regulatory interactions, Scientific Reports, 5, 11432.
- Huttlin EL, Ting L, Bruckner RJ, et al. (2015). The bioplex network: A systematic exploration of the human interactome, Cell, 162, 425-440. https://doi.org/10.1016/j.cell.2015.06.043
- Jaeger J, Sengupta R, and Ruzzo WL (2003). Improved gene selection for classification of microarrays, Pacific Symposium on Biocomputing, 8, 53-64.
- Liu W (2013). Gaussian graphical model estimation with false discovery rate control, The Annals of Statistics, 41, 2948-2978.
- Razick S, Magklaras G, and Donaldson IM (2008). IRefIndex: A consolidated protein interaction database with provenance, BMC Bioinformatics, 9, 405.
- Rosato A, Tenori L, Cascante M, De Atauri Carulla PR, Martins Dos Santos VA, and Saccenti E (2018). From correlation to causation: Analysis of metabolomics data using systems biology approaches, Metabolomics, 14, 37.
- Shaw P, Greenstein D, Lerch J, et al. (2006). Intellectual ability and cortical development in children and adolescents, Nature, 440, 676-679. https://doi.org/10.1038/nature04513
- Shedden K and Taylor J (2005). Differential correlation detects complex associations between gene expression and clinical outcomes in lung adenocarcinomas, Methods of Microarray Data Analysis, (pp. 121-131), Springer, Boston.
- Storey JD (2002). A direct approach to false discovery rates, Journal of the Royal Statistical Society, Series B, 64, 479-498. https://doi.org/10.1111/1467-9868.00346
- Wang W and Fan J (2017). Asymptotics of empirical eigenstructure for high dimensional spiked covariance, The Annals of Statistics, 45, 1342-1374.
- Xia Y, Cai T, and Cai TT (2015). Testing differential networks with applications to detecting geneby-gene interactions, Biometrika, 102, 247-266. https://doi.org/10.1093/biomet/asu074
- Yu D, Lee SH, Lim J, Xiao G, Craddock RC, and Biswal BB (2018). Fused lasso regression for identifying differential correlations in brain connectome graphs, Statistical Analysis and Data Mining, 11, 203-226. https://doi.org/10.1002/sam.11382
- Zhao F, Xuan Z, Liu L, and Zhang MQ (2005). TRED: A Transcriptional Regulatory Element Database and a platform for in silico gene regulation studies, Nucleic Acids Research, 33, D103-D107. https://doi.org/10.1093/nar/gki004
- Zheng G, Tu K, Yang Q, Xiong Y, Wei C, Xie L, Zhu Y, and Li Y (2008). ITFP: An integrated platform of mammalian transcription factors, Bioinformatics, 24, 2416-2417. https://doi.org/10.1093/bioinformatics/btn439