DOI QR코드

DOI QR Code

Network Analysis in Systems Epidemiology

  • Park, JooYong (Department of Biomedical Sciences, Seoul National University Graduate School) ;
  • Choi, Jaesung (Institute of Health Policy and Management, Seoul National University Medical Research Center) ;
  • Choi, Ji-Yeob (Department of Biomedical Sciences, Seoul National University Graduate School)
  • Received : 2021.04.09
  • Accepted : 2021.06.21
  • Published : 2021.07.31

Abstract

Traditional epidemiological studies have identified a number of risk factors for various diseases using regression-based methods that examine the association between an exposure and an outcome (i.e., one-to-one correspondences). One of the major limitations of this approach is the "black-box" aspect of the analysis, in the sense that this approach cannot fully explain complex relationships such as biological pathways. With high-throughput data in current epidemiology, comprehensive analyses are needed. The network approach can help to integrate multi-omics data, visualize their interactions or relationships, and make inferences in the context of biological mechanisms. This review aims to introduce network analysis for systems epidemiology, its procedures, and how to interpret its findings.

Keywords

Acknowledgement

This study was supported by a National Research Foundation of Korea grant funded by the Korean government (NRF-2018R1A2A3075397) and by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (HI19C1178).

References

  1. Susser M, Susser E. Choosing a future for epidemiology: II. From black box to Chinese boxes and eco-epidemiology. Am J Public Health 1996;86(5):674-677. https://doi.org/10.2105/AJPH.86.5.674
  2. Hu FB. Metabolic profiling of diabetes: from black-box epidemiology to systems epidemiology. Clin Chem 2011;57(9):1224-1226. https://doi.org/10.1373/clinchem.2011.167056
  3. Weed DL. Beyond black box epidemiology. Am J Public Health 1998;88(1):12-14. https://doi.org/10.2105/AJPH.88.1.12
  4. Laszlo A, Krippner S. Chapter 3: systems theories: their origins, foundations, and development. In: Jordan JS, editor. Systems theories and a priori aspects of perception. Amsterdam: Elsevier; 1998, p. 47-74.
  5. Lund E, Dumeaux V. Systems epidemiology in cancer. Cancer Epidemiol Biomarkers Prev 2008;17(11):2954-2957. https://doi.org/10.1158/1055-9965.EPI-08-0519
  6. Haring R, Wallaschofski H. Diving through the "-omics": the case for deep phenotyping and systems epidemiology. OMICS 2012;16(5):231-234. https://doi.org/10.1089/omi.2011.0108
  7. Cornelis MC, Hu FB. Systems epidemiology: a new direction in nutrition and metabolic disease research. Curr Nutr Rep 2013;2(4):10.1007/s13668-013-0052-4.
  8. Dammann O, Gray P, Gressens P, Wolkenhauer O, Leviton A. Systems epidemiology: what's in a name? Online J Public Health Inform 2014;6(3):e198. https://doi.org/10.5210/ojphi.v6i3.5571
  9. Yan J, Risacher SL, Shen L, Saykin AJ. Network approaches to systems biology analysis of complex disease: integrative methods for multi-omics data. Brief Bioinform 2018;19(6):1370-1381.
  10. Barabasi AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to human disease. Nat Rev Genet 2011;12(1):56-68. https://doi.org/10.1038/nrg2918
  11. Hevey D. Network analysis: a brief overview and tutorial. Health Psychol Behav Med 2018;6(1):301-328. https://doi.org/10.1080/21642850.2018.1521283
  12. Batushansky A, Toubiana D, Fait A. Correlation-based network generation, visualization, and analysis as a powerful tool in biological studies: a case study in cancer cell metabolism. Biomed Res Int 2016;2016:8313272.
  13. Epskamp S, Fried EI. A tutorial on regularized partial correlation networks. Psychol Methods 2018;23(4):617-634. https://doi.org/10.1037/met0000167
  14. Perez De Souza L, Alseekh S, Brotman Y, Fernie AR. Network-based strategies in metabolomics data analysis and interpretation: from molecular networking to biological interpretation. Expert Rev Proteomics 2020;17(4):243-255. https://doi.org/10.1080/14789450.2020.1766975
  15. Kohl M, Wiese S, Warscheid B. Cytoscape: software for visualization and analysis of biological networks. Methods Mol Biol 2011;696:291-303. https://doi.org/10.1007/978-1-60761-987-1_18
  16. Kolaczyk ED, Csardi G. Statistical analysis of network data with R. New York: Springer; 2014, p. 29-41.
  17. Epskamp S, Borsboom D, Fried EI. Estimating psychological networks and their accuracy: a tutorial paper. Behav Res Methods 2018;50(1):195-212. https://doi.org/10.3758/s13428-017-0862-1
  18. Langfelder P, Horvath S. Fast R functions for robust correlations and hierarchical clustering. J Stat Softw 2012;46(11):i11.
  19. Kim S. ppcor: an R package for a fast calculation to semi-partial correlation coefficients. Commun Stat Appl Methods 2015;22(6):665-674. https://doi.org/10.5351/CSAM.2015.22.6.665
  20. Pedersen TL. Package 'ggraph'; 2021 [cited 2021 Jul 1]. Available from: https://mirror.uned.ac.cr/cran/web/packages/ggraph/ggraph.pdf.
  21. Csardi G. Package 'igraph'; 2015 [cited 2021 Jul 1]. Available from: https://cran.microsoft.com/snapshot/2017-05-27/web/packages/igraph/igraph.pdf.
  22. Epskamp S, Cramer AO, Waldorp LJ, Schmittmann VD, Borsboom D. qgraph: network visualizations of relationships in psychometric data. J Stat Softw 2012;48(4):1-18.
  23. Gentry J, Gentleman R, Huber W. How to plot a graph using Rgraphviz; 2021 [cited 2021 May 1]. Available from: http://www.bioconductor.org/packages/release/bioc/vignettes/Rgraphviz/inst/doc/Rgraphviz.pdf.
  24. Riaz MR, Preston GM, Mithani A. MAPPS: a web-based tool for metabolic pathway prediction and network analysis in the postgenomic era. ACS Synth Biol 2020;9(5):1069-1082. https://doi.org/10.1021/acssynbio.9b00397
  25. Zhou D, Zhu W, Sun T, Wang Y, Chi Y, Chen T, et al. iMAP: a web server for metabolomics data integrative analysis. Front Chem 2021;9:659656. https://doi.org/10.3389/fchem.2021.659656
  26. Fukushima A. DiffCorr: an R package to analyze and visualize differential correlations in biological networks. Gene 2013;518(1):209-214. https://doi.org/10.1016/j.gene.2012.11.028
  27. Li Z, Zhang Y, Hu T, Likhodii S, Sun G, Zhai G, et al. Differential metabolomics analysis allows characterization of diversity of metabolite networks between males and females. PLoS One 2018;13(11):e0207775. https://doi.org/10.1371/journal.pone.0207775
  28. Wang Y, Wang G, Jing RN, Hu T, Likhodii S, Sun G, et al. Metabolomics analysis of human plasma metabolites reveals the age-and sex-specific associations. Liq Chromatogr Relat Technol 2020;43(5-6):185-194. https://doi.org/10.1080/10826076.2019.1701016
  29. Costello CA, Hu T, Liu M, Zhang W, Furey A, Fan Z, et al. Differential correlation network analysis identified novel metabolomics signatures for non-responders to total joint replacement in primary osteoarthritis patients. Metabolomics 2020;16(5):61. https://doi.org/10.1007/s11306-020-01683-1
  30. Huang T, Glass K, Zeleznik OA, Kang JH, Ivey KL, Sonawane AR, et al. A network analysis of biomarkers for type 2 diabetes. Diabetes 2019;68(2):281-290. https://doi.org/10.2337/db18-0892
  31. Floegel A, Wientzek A, Bachlechner U, Jacobs S, Drogan D, Prehn C, et al. Linking diet, physical activity, cardiorespiratory fitness and obesity to serum metabolite networks: findings from a population-based study. Int J Obes (Lond) 2014;38(11):1388-1396. https://doi.org/10.1038/ijo.2014.39

Cited by

  1. Network Analysis of Demographics, Dietary Intake, and Comorbidity Interactions vol.13, pp.10, 2021, https://doi.org/10.3390/nu13103563