• Title/Summary/Keyword: multi-field coupling

Search Result 68, Processing Time 0.027 seconds

Multi-Mode Wireless Power Transfer System with Dual Loop Structure (이중루프 구조를 갖는 다중모드 무선전력전송 시스템)

  • Han, Minseok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.6
    • /
    • pp.578-583
    • /
    • 2016
  • In this paper, we propose a multi-mode wireless power transfer (WPT) system with a dual loop structure. The proposed multi-mode WPT system consist of outer loop module which can operate at two different frequency bands including 6.78 MHz magnetic resonance WPT mode and 13.56 MHz near field communication (NFC) mode and inner loop module connected with outer loop which can operate at two different frequency bands including WPC mode and PMA mode based on inductive coupling standards. In order to be able to embed this system into smartphone battery back cover, the electrical designs are optimized and then the size was fixed $45{\times}90{\times}0.35mm3$ (including ferrite sheet) which is the same commercial smartphone. The proposed multi-mode WPT module can cover WPC and PMA mode based on inductive coupling. Moreover, it has more than 20 dB return loss characteristics at two different frequency bands including 6.78 MHz and 13.56 MHz, and shows more than 70 % transfer efficiency between resonant coils at 6.78 MHz in magnetic resonant charging environment.

Economic Evaluation of Coupling APR1400 with a Desalination Plant in Saudi Arabia

  • Abdoelatef, M. Gomaa;Field, Robert M.;Lee, YongKwan
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.73-87
    • /
    • 2016
  • Combining power generation and water production by desalination is economically advantageous. Most desalination projects use fossil fuels as an energy source, and thus contribute to increased levels of greenhouse gases. Environmental concerns have spurred researchers to find new sources of energy for desalination plants. The coupling of nuclear power production with desalination is one of the best options to achieve growth with lower environmental impact. In this paper, we will per-form a sensitivity study of coupling nuclear power to various combinations of desalination technology: {1} thermal (MSF [Multi-Stage Flashing], MED [Multi-Effect Distillation], and MED-TVC [Multi-Effect Distillation with Thermal Vapour Compression]); {2} membrane RO [Reverse Osmosis]; and {3} hybrid (MSF-RO [Multi-Stage Flashing & Reverse Osmosis] and MED-RO [Multi-Effect Distillation & Reverse Osmosis]). The Korean designed reactor plant, the APR1400 will be modeled as the energy production facility. The economical evaluation will then be executed using the computer program DEEP (Desalination Economic Evaluation Program) as developed by the IAEA. The program has capabilities to model several types of nuclear and fossil power plants, nuclear and fossil heat sources, and thermal distillation and membrane desalination technologies. The output of DEEP includes levelized water and power costs, breakdowns of cost components, energy consumption, and net saleable power for any selected option. In this study, we will examine the APR1400 coupled with a desalination power plant in the Kingdom of Saudi Arabia (KSA) as a prototypical example. The KSA currently has approximately 20% of the installed worldwide capacity for seawater desalination. Utilities such as power and water are constructed and run by the government. Per state practice, economic evaluation for these utilities do not consider or apply interest or carrying cost. Therefore, in this paper the evaluation results will be based on two scenarios. The first one assumes the water utility is under direct government control and in this case the interest and discount rate will be set to zero. The second scenario will assume that the water utility is controlled by a private enterprise and in this case we will consider different values of interest and discount rates (4%, 8%, & 12%).

Waveguide Slot Array Antenna for Heliborne MTD Radar (헬리콥터 탑재 MTD 레이다용 도파관 슬롯배열 안테나)

  • Kim Dong-Seok;Han In-Hee;Gwak Young-Gil;Shin Keun-Sup
    • Proceedings of the IEEK Conference
    • /
    • 2004.06a
    • /
    • pp.139-142
    • /
    • 2004
  • X-band Waveguide slot way antenna is developed for heliborne MTD radar applications. The antenna is composed of multi-layer waveguide structures. Each of them has it's own functions, such as, radiation, power/phase distribution, coupling, etc. Broad-wall offset slots are used for radiators, inclined slots on broad-wall for power distribution to radiating(branch) waveguide, some kind of coaxial probe structures for in-phase coupling and H-plane T-junction power dividers. Antenna is realized by precision machining and careful assembly. It is tested and measured by 3m${\times}$l.7m planar near-field probe, which is set-up in MTG. Far-field calculations have good agreement in tolerable bounds. Special but necessary process such as brazing, will increase the accuracy and performance. Results show promising possibilities of future applications for real systems.

  • PDF

Coupling Currents distribution and Losses of HTS Mult-filament round wires by using FEM (유한요소법을 이용한 고온 초전도 다심 원형선재의 결합전류분포 및 손실계산)

  • Sim, Jung-Wook;Cha, Guee-Soo;Lee, Ji-Kwang
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.834-836
    • /
    • 2000
  • The round HTS wire is easier to handle than the rectangular HTS tape. This paper describes the coupling losses of the round HTS wires by finite element method. Effect of filament arrangement and filament size of the round HTS wire are considered. Three types of filaments arrangement, one and double layer radial filaments and Multi-filament, are considered. Calculation results show that coupling losses of the one layer filaments round HTS wire vary only a little with the direction of external magnetic field.

  • PDF

Sensor fault diagnosis for bridge monitoring system using similarity of symmetric responses

  • Xu, Xiang;Huang, Qiao;Ren, Yuan;Zhao, Dan-Yang;Yang, Juan
    • Smart Structures and Systems
    • /
    • v.23 no.3
    • /
    • pp.279-293
    • /
    • 2019
  • To ensure high quality data being used for data mining or feature extraction in the bridge structural health monitoring (SHM) system, a practical sensor fault diagnosis methodology has been developed based on the similarity of symmetric structure responses. First, the similarity of symmetric response is discussed using field monitoring data from different sensor types. All the sensors are initially paired and sensor faults are then detected pair by pair to achieve the multi-fault diagnosis of sensor systems. To resolve the coupling response issue between structural damage and sensor fault, the similarity for the target zone (where the studied sensor pair is located) is assessed to determine whether the localized structural damage or sensor fault results in the dissimilarity of the studied sensor pair. If the suspected sensor pair is detected with at least one sensor being faulty, field test could be implemented to support the regression analysis based on the monitoring and field test data for sensor fault isolation and reconstruction. Finally, a case study is adopted to demonstrate the effectiveness of the proposed methodology. As a result, Dasarathy's information fusion model is adopted for multi-sensor information fusion. Euclidean distance is selected as the index to assess the similarity. In conclusion, the proposed method is practical for actual engineering which ensures the reliability of further analysis based on monitoring data.

A Study on Trajectory Tracking of Field Robot using Adpative Control (적응제어 기법을 이용한 필드 로봇의 궤적 추종에 관한 연구)

  • 서우석;김승수;양순용;이병룡;안경관
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.496-499
    • /
    • 1997
  • Field robot represented by excavator can be applied for various kinds of working in manufacturing, construction, agriculture etc. because of the flexibility of its multi-joint mechanism and the high power of hydraulic actuators. In general, the dynamics of field robot have strong coupling, various kinds of non-linearity, and time-varying parameters according to working conditions. Therefore, it is very difficult to describe the system well, and design controller systematically based on its model. This paper established the mathematical model of field robot driven by electro-hydraulic servomechanism and constructed the adaptive control system robust to external load variations. The proposed control system for the field robot was evaluated by the computer simulation and the performance results of trajectory tracking were compared with that of PID control system.

  • PDF

Analysis on Geo-stress and casing damage based on fluid-solid coupling for Q9G3 block in Jibei oil field

  • Ji, Youjun;Li, Xiaoyu
    • Geomechanics and Engineering
    • /
    • v.15 no.1
    • /
    • pp.677-686
    • /
    • 2018
  • Aimed at serious casing damage problem during the process of oilfield development by injecting water, based on seepage mechanics, fluid mechanics and the theory of rock mechanics, the multi-physics coupling theory was also taken into account, the mathematical model for production of petroleum with water flooding was established, and the method to solve the coupling model was presented by combination of Abaqus and Eclipse software. The Q9G3 block in Jibei oilfield was taken for instance, the well log data and geological survey data were employed to build the numerical model of Q9G3 block, the method established above was applied to simulate the evolution of seepage and stress. The production data was imported into the model to conduct the history match work of the model, and the fitting accuracy of the model was quite good. The main mechanism of casing damage of the block was analyzed, and some wells with probable casing damage problem were pointed out, the displacement of the well wall matched very well with testing data of the filed. Finally, according to the simulation results, some useful measures for preventing casing damage in Jibei oilfield was proposed.

A Study on Trajectory Tracking Control of Field Robot

  • Seo, Woo-Seog;Kim, Sung-Su;Yang, Soon-Yong;Lee, Byung-Ryong;Ahn, Kyung-Kwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.132.4-132
    • /
    • 2001
  • Field robot represented by excavator can be applied for various kinds of working in manufacturing, construction, agriculture etc. because of the flexibility of its multi-joint mechanism and the high power of hydraulic actuators. In general, the dynamics of field robot have strong coupling, various kinds of non-linearity, and time varying parameters according to working conditions. Therefore, it is very difficult to describe the system well, and design controller systematically based on its model. This paper established the mathematical model of field robot driven by electro-hydraulic servomechanism and constructed the adaptive control system robust to external load variations. The proposed control system for the field robot was evaluated by the computer simulation, and the performance results of trajectory tracking were compared with that of PID control system.

  • PDF

A Study on the Dynamic Behavior of Underground Tunnels with a Cavity (주변 공동을 고려한 터널의 동적거동에 관한 연구)

  • 김민규;이종우;이종세
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.171-178
    • /
    • 2002
  • A dynamic analysis of a horseshoe_shaped tunnel near to cavity was performed to study the effect of the cavity on the dynamic behavior of the tunnel. In order to obtain the dynamic response of the tunnel embedded in a semi-infinite domain, a hybrid numerical technique was primarily developed. A dynamic fundamental solution in frequency domain for multi-layered half planes was derived and subsequently incorporated in the boundary element method. Coupling of the boundary element method for the far field with the finite element method for the near field is made by imposing compatibility condition of a displacement at the interface. The boundary element method is then coupled with the finite element method, which is utilized to model the near field including the tunnel and the cavity. In order to demonstrate the validity of the proposed technique, dynamic responses of single and multiply-layered semi-infinite structural systems are obtained by using the Kicker waveform and investigated in the limestone layer to find how the being and the location of the cavity affect the dynamic characteristics of the system.

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won;Yoo, Jin-Seong;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2488-2498
    • /
    • 2021
  • The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.