Acknowledgement
This work was supported by the National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP), Republic of Korea [grant number NRF-2018M2B2A9065744/0666-20200008].
References
- T. Yonomoto, et al., Heat transfer analysis of the passive residual heat removal system in ROSA/AP6000 experiments, Nucl. Technol. 124 (1998) 18-30. https://doi.org/10.13182/NT98-A2906
- P. Meloni, J. Pignatel, Theoretical design and assessment of isolation condenser system controlled with thermal valve devices, in: Proc. International Conference Nuclear Engineering (ICONE-6), California, San Diego, 1998, p. 399. May.
- H.S. Park, H.C. No, A condensation experiment in the presence of noncondensables in a vertical tube of a passive containment cooling system and its assessment with RELAP5/MOD3.2, Nucl. Technol. 127 (1999) 160-169, https://doi.org/10.13182/NT99-A2992.
- E.M. Sparrow, W.J. Minkowycz, M. Saddy, Forced convection condensation in the presence of noncondensables and interfacial resistance, Int. J. Heat Mass Tran. 10 (1967) 1829-1845, https://doi.org/10.1016/0017-9310(67)90053-1.
- A. Dehbi, F. Janasz, B. Bell, Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach, Nucl. Eng. Des. 258 (2013) 199-210, https://doi.org/10.1016/j.nucengdes.2013.02.002.
- W. Ambrosini, N. Forgione, F. Merli, F. Oriolo, S. Paci, I. Kljenak, P. Kostka, L. Vyskocil, J.R. Travis, J. Lehmkuhl, S. Kelm, Y.-S. Chin, M. Bucci, Lesson learned from the SARNET wall condensation benchmarks, Ann. Nucl. Energy 74 (2014) 153-164, https://doi.org/10.1016/j.anucene.2014.07.014.
- W. Ambrosini, N. Forgione, F. Oriolo, Experiments and CFD analyses on condensation heat transfer on a flat plate in a square cross section channel, in: 11th International Topic Meeting in Nuclear Reactor Thermal-Hydraulics (NURETH-11), Avignon, France, October 2-6, 2005.
- M. Bucci, Experimental and Computational Analysis of Condensation Phenomena for the Thermal-Hydraulic Analysis of LWRs Containments, University of Pisa, 2009. Ph. D. thesis.
- D.C. Visser, N.B. Siccama, S.T. Jayaraju, E.M.J. Komen, Application of a CFD based containment model to different large-scale hydrogen distribution experiments, Nucl. Eng. Des. 278 (2014) 491-502, https://doi.org/10.1016/j.nucengdes.2014.08.005.
- L. Vyskocil, J. Schmid, J. Macek, CFD simulation of airesteam flow with condensation, Nucl. Eng. Des. 279 (2014) 147-157, https://doi.org/10.1016/j.nucengdes.2014.02.014.
- B.G. Jeon, D.Y. Kim, C.W. Shin, H.C. No, Parametric experiments and CFD analysis on condensation heat transfer performance of externally condensing tubes, Nucl. Eng. Des. 293 (2015) 447-457, https://doi.org/10.1016/j.nucengdes.2015.07.071.
- W. Fu, X. Li, X. Wu, M.L. Corradini, Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube, Nucl. Eng. Des. 297 (2016) 197-207, https://doi.org/10.1016/j.nucengdes.2015.11.034.
- M. Punetha, S. Khandekar, A CFD based modelling approach for predicting steam condensation in the presence of non-condensable gases, Nucl. Eng. Des. 324 (2017) 280-296, https://doi.org/10.1016/j.nucengdes.2017.09.007.
- X. Cheng, P. Bazin, P. Cornet, D. Hittner, J.D. Jackson, J. Lopez Jimenez, A. Naviglio, F. Oriolo, H. Petzold, Experimental data base for containment thermalhydraulic analysis, Nucl. Eng. Des. 204 (2001) 267-284, https://doi.org/10.1016/S0029-5493(00)00311-3.
- H. Uchida, A. Oyama, Y. Togo, Evaluation of post-incident cooling systems of light-water power reactors, in: Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy, Geneva, vol. 13, 1965, pp. 93-104.
- T. Tagami, Interim Report on Safety Assessment and Facilities Establishment Project for June, Japanese Atomic Energy Research Agency, 1965.
- A. Dehbi, et al., Condensation experiments in steam-air and steam-air-helium mixtures under turbulent natural convection, in: National Heat Transfer Conference, AIChE, United States, Minneapolis, 1991, pp. 19-28.
- J. Malet, E. Porcheron, J. Vendel, OECD international standard problem ISP-47 on containment thermal-hydraulicsdconclusions of the TOSQAN part, Nucl. Eng. Des. 240 (2010) 3209-3220, https://doi.org/10.1016/j.nucengdes.2010.05.061.
- T.F. Kanzleiter, K.O. Fischer, H.J. Allelein, S. Schwarz, Thai multi-compartment containment experiments with atmosphere stratification, in: 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, France, 2005.
- CSNI, OECD/SETH-2 projectdPANDA and MISTRA experiments final summary report (investigation of key issues for the simulation of thermal-hydraulic conditions in water reactor containment), Nuclear Energy Agency, NEA/CSNI/R 5 (2012) 2012.
- S. Kuhn, Investigation of Heat Transfer from Condensing Steam-Gas Mixtures and Turbulent Films Flowing Downward inside a Vertical Tube, Ph. D. thesis, University of California, Berkeley, 1995.
- J. Su, Z. Sun, G. Fan, M. Ding, Experimental study of the effect of noncondensable gases on steam condensation over a vertical tube external surface, Nucl. Eng. Des. 262 (2013) 201-208, https://doi.org/10.1016/j.nucengdes.2013.05.002.
- J. Lee, G.-C. Park, H.K. Cho, Simulation of wall film condensation with noncondensable gases using wall function approach in component thermal hydraulic analysis code CUPID, J. Mech. Sci. Technol. 32 (2018) 1015-1023, https://doi.org/10.1007/s12206-018-0202-0.
- G. Vijaya Kumar, et al., Implementation of a CFD model for wall condensation in the presence of non-condensable gas mixtures, Appl. Therm. Eng. 187 (2021) 116546, https://doi.org/10.1016/j.applthermaleng.2021.116546.
- N.E. Todreas, M. Kazimi, Nuclear Systems: Thermal Hydraulic Fundamentals, second ed., vol. 1, CRC press, 2012.
- D. Paladino, et al., OECD/NEA HYMERES project: for the analysis and mitigation of a severe accident leading to hydrogen release into a nuclear plant containment, in: Proceedings of ICAPP 2014, Charlotte, USA, 2014. April 6-9, Paper 14322.
- E. Porcheron, P. Lemaitre, A. Nuboer, V. Rochas, J. Vendel, Experimental investigation in the TOSQAN facility of heat and mass transfers in a spray for containment application, Nucl. Eng. Des. 237 (2007) 1862-1871, https://doi.org/10.1016/j.nucengdes.2007.01.018.
- H.-J. Allelein, S. Arndt, W. Klein-Hessling, S. Schwarz, C. Spengler, G. Weber, COCOSYS: status of development and validation of the German containment code system, Nucl. Eng. Des. 238 (2008) 872-889, https://doi.org/10.1016/j.nucengdes.2007.08.006.
- D. Paladino, O. Auban, M. Huggenberger, J. Dreier, A PANDA integral test on the effect of light gas on a Passive Containment Cooling System (PCCS), Nucl. Eng. Des. 241 (2011) 4551-4561, https://doi.org/10.1016/j.nucengdes.2010.11.022.
- I. Kljenak, M. Babic, B. Mavko, I. Bajsic, Modeling of containment atmosphere mixing and stratification experiment using a CFD approach, Nucl. Eng. Des. 236 (2006) 1682-1692, https://doi.org/10.1016/j.nucengdes.2006.04.025.
- P. Royl, U.J. Lee, J.R. Travis, W. Breitung, D. Karlsruhe, Benchmarking of the 3D CFD code GASFLOW II with containment thermal hydraulic tests from HDR and Thai, in: CFD4NRS Conference, Munchen, 2006, pp. 685-702. September 5-7.
- S. Kelm, W. Jahn, E.A. Reinecke, H.J. Allelein, Passive auto-catalytic recombiner operationevalidation of a CFD approach against OECD-Thai HR2 test, in: Proceedings of OECD/NEA & IAEA Workshop on Experiments and CFD Codes Application to Nuclear Reactor Safety, vols. 9-13, 2012.
- D.C. Visser, M. Houkema, N.B. Siccama, E.M.J. Komen, Validation of a FLUENT CFD model for hydrogen distribution in a containment, Nucl. Eng. Des. 245 (2012) 161-171, https://doi.org/10.1016/j.nucengdes.2012.01.025.
- M. Andreani, D. Paladino, T. George, Simulation of basic gas mixing tests with condensation in the PANDA facility using the Gothic code, Nucl. Eng. Des. 240 (2010) 1528-1547, https://doi.org/10.1016/j.nucengdes.2010.02.021.
- J.-D. Li, CFD simulation of water vapour condensation in the presence of noncondensable gas in vertical cylindrical condensers, Int. J. Heat Mass Tran. 57 (2013) 708-721, https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.051.
- G. Zschaeck, T. Frank, A.D. Burns, CFD modelling and validation of wall condensation in the presence of non-condensable gases, Nucl. Eng. Des. 279 (2014) 137-146, https://doi.org/10.1016/j.nucengdes.2014.03.007.
- S.G. Lim, H.C. No, S.W. Lee, H.G. Kim, J. Cheon, J.M. Lee, S.M. Ohk, Development of stability maps for flashing-induced instability in a passive containment cooling system for iPOWER, Nuclear Engineering and Technology 52 (1) (2020) 37-50, https://doi.org/10.1016/j.net.2019.06.026.
- G. Yadigaroglu, Computational Fluid Dynamics for nuclear applications: from CFD to multi-scale CMFD, Nucl. Eng. Des. 235 (2005) 153-164, https://doi.org/10.1016/j.nucengdes.2004.08.044.
- H. Yoon, CUPID Code Manual vol.1: Mathematical Models and Solution Methods, Korea Atomic Energy Research Institute, KAERI/TR-4403/2011, 2011.
- Korea Atomic Energy Research Institute, MARS Code Manual, KAERI/TR-3872/2009, 2009.
- J.R. Lee, H.Y. Yoon, Preliminary study for a PWR steam generator with CUPID/MARS multi-scale thermal-hydraulics simulation, Appl. Therm. Eng. 115 (2017) 1245-1254, https://doi.org/10.1016/j.applthermaleng.2016.08.079.
- H.K. Cho, Y.J. Cho, H.Y. Yoon, Heat structure coupling of CUPID and MARS for the multi-scale simulation of the passive auxiliary feedwater system, Nucl. Eng. Des. 273 (2014) 459-468, https://doi.org/10.1016/j.nucengdes.2014.03.017.
- C.-H. Song, T.-S. Kwon, B.-J. Yun, K.-Y. Choi, H.-Y. Kim, H.-G. Jun, H.-G. Kim, Thermal-hydraulic R&Ds for the APR+ Developments in Korea, 2010, pp. 823-828, https://doi.org/10.1115/ICONE18-29870.
- J. Lee, G.-C. Park, H.K. Cho, Improvement of CUPID code for simulating filmwise steam condensation in the presence of noncondensable gases, Nucl. Eng. Technol. 47 (2015) 567-578, https://doi.org/10.1016/j.net.2015.03.007.
- C.D. adapco, USER GUIDE STAR-CCM+ Version 13.02, CD-adapco, 2018.
- P.F. Peterson, Diffusion layer modeling for, Trans. ASME. 122 (2000) 716-720, https://doi.org/10.1115/1.1318215.
- S. Mimouni, A. Foissac, J. Lavieville, CFD modelling of wall steam condensation by a two-phase flow approach, Nucl. Eng. Des. 241 (2011) 4445-4455, https://doi.org/10.1016/j.nucengdes.2010.09.020.
- V. Kalra, CFD Validation and Scaling of Condensation Heat Transfer, Master Thesis, Missouri University of Science and Technology, 2017.
- S. Ghiaasiaan, Two-Phase Flow, Boiling and Condensation, Cambridge University Press, New York, 2008.