DOI QR코드

DOI QR Code

Multi-scale simulation of wall film condensation in the presence of non-condensable gases using heat structure-coupled CFD and system analysis codes

  • Lee, Chang Won (Seoul National University, Department of Nuclear Engineering) ;
  • Yoo, Jin-Seong (Seoul National University, Department of Nuclear Engineering) ;
  • Cho, Hyoung Kyu (Seoul National University, Department of Nuclear Engineering)
  • Received : 2020.11.15
  • Accepted : 2021.03.02
  • Published : 2021.08.25

Abstract

The wall film-wise condensation plays an important role in the heat transfer processes of heat exchangers, refrigerators, and air conditioner. In the field of nuclear engineering, steam condensation is often utilized in safety systems to remove the core decay heat under both transient and accident conditions. In particular, passive containment cooling system (PCCS), are designed to ensure containment safety under severe accident conditions. A computational fluid dynamics (CFD) scale analysis has been conducted to calculate the heat transfer rate of the PCCS. However, despite the increase in computing power, there are challenges in the long-term transient simulation of containment using CFD scale codes. In this study, a heat structure coupling between the CFD and system analysis codes was performed to efficiently analyze PCCS. In addition, the component unstructured program for interfacial dynamics (CUPID) was improved to analyze the condensation behavior of ternary gas mixtures. Thereafter, the condensation heat transfer on the primary side was calculated using the improved CUPID and CFD code, whereas that on the secondary side was simulated using MARS. Both the coupled codes were validated against the CONAN facility database. Finally, conjugate heat transfer simulations with wall condensation in the presence of non-condensable gases were appropriately performed.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) funded by the Ministry of Science, ICT and Future Planning (MSIP), Republic of Korea [grant number NRF-2018M2B2A9065744/0666-20200008].

References

  1. T. Yonomoto, et al., Heat transfer analysis of the passive residual heat removal system in ROSA/AP6000 experiments, Nucl. Technol. 124 (1998) 18-30. https://doi.org/10.13182/NT98-A2906
  2. P. Meloni, J. Pignatel, Theoretical design and assessment of isolation condenser system controlled with thermal valve devices, in: Proc. International Conference Nuclear Engineering (ICONE-6), California, San Diego, 1998, p. 399. May.
  3. H.S. Park, H.C. No, A condensation experiment in the presence of noncondensables in a vertical tube of a passive containment cooling system and its assessment with RELAP5/MOD3.2, Nucl. Technol. 127 (1999) 160-169, https://doi.org/10.13182/NT99-A2992.
  4. E.M. Sparrow, W.J. Minkowycz, M. Saddy, Forced convection condensation in the presence of noncondensables and interfacial resistance, Int. J. Heat Mass Tran. 10 (1967) 1829-1845, https://doi.org/10.1016/0017-9310(67)90053-1.
  5. A. Dehbi, F. Janasz, B. Bell, Prediction of steam condensation in the presence of noncondensable gases using a CFD-based approach, Nucl. Eng. Des. 258 (2013) 199-210, https://doi.org/10.1016/j.nucengdes.2013.02.002.
  6. W. Ambrosini, N. Forgione, F. Merli, F. Oriolo, S. Paci, I. Kljenak, P. Kostka, L. Vyskocil, J.R. Travis, J. Lehmkuhl, S. Kelm, Y.-S. Chin, M. Bucci, Lesson learned from the SARNET wall condensation benchmarks, Ann. Nucl. Energy 74 (2014) 153-164, https://doi.org/10.1016/j.anucene.2014.07.014.
  7. W. Ambrosini, N. Forgione, F. Oriolo, Experiments and CFD analyses on condensation heat transfer on a flat plate in a square cross section channel, in: 11th International Topic Meeting in Nuclear Reactor Thermal-Hydraulics (NURETH-11), Avignon, France, October 2-6, 2005.
  8. M. Bucci, Experimental and Computational Analysis of Condensation Phenomena for the Thermal-Hydraulic Analysis of LWRs Containments, University of Pisa, 2009. Ph. D. thesis.
  9. D.C. Visser, N.B. Siccama, S.T. Jayaraju, E.M.J. Komen, Application of a CFD based containment model to different large-scale hydrogen distribution experiments, Nucl. Eng. Des. 278 (2014) 491-502, https://doi.org/10.1016/j.nucengdes.2014.08.005.
  10. L. Vyskocil, J. Schmid, J. Macek, CFD simulation of airesteam flow with condensation, Nucl. Eng. Des. 279 (2014) 147-157, https://doi.org/10.1016/j.nucengdes.2014.02.014.
  11. B.G. Jeon, D.Y. Kim, C.W. Shin, H.C. No, Parametric experiments and CFD analysis on condensation heat transfer performance of externally condensing tubes, Nucl. Eng. Des. 293 (2015) 447-457, https://doi.org/10.1016/j.nucengdes.2015.07.071.
  12. W. Fu, X. Li, X. Wu, M.L. Corradini, Numerical investigation of convective condensation with the presence of non-condensable gases in a vertical tube, Nucl. Eng. Des. 297 (2016) 197-207, https://doi.org/10.1016/j.nucengdes.2015.11.034.
  13. M. Punetha, S. Khandekar, A CFD based modelling approach for predicting steam condensation in the presence of non-condensable gases, Nucl. Eng. Des. 324 (2017) 280-296, https://doi.org/10.1016/j.nucengdes.2017.09.007.
  14. X. Cheng, P. Bazin, P. Cornet, D. Hittner, J.D. Jackson, J. Lopez Jimenez, A. Naviglio, F. Oriolo, H. Petzold, Experimental data base for containment thermalhydraulic analysis, Nucl. Eng. Des. 204 (2001) 267-284, https://doi.org/10.1016/S0029-5493(00)00311-3.
  15. H. Uchida, A. Oyama, Y. Togo, Evaluation of post-incident cooling systems of light-water power reactors, in: Proceedings of the Third International Conference on the Peaceful Uses of Atomic Energy, Geneva, vol. 13, 1965, pp. 93-104.
  16. T. Tagami, Interim Report on Safety Assessment and Facilities Establishment Project for June, Japanese Atomic Energy Research Agency, 1965.
  17. A. Dehbi, et al., Condensation experiments in steam-air and steam-air-helium mixtures under turbulent natural convection, in: National Heat Transfer Conference, AIChE, United States, Minneapolis, 1991, pp. 19-28.
  18. J. Malet, E. Porcheron, J. Vendel, OECD international standard problem ISP-47 on containment thermal-hydraulicsdconclusions of the TOSQAN part, Nucl. Eng. Des. 240 (2010) 3209-3220, https://doi.org/10.1016/j.nucengdes.2010.05.061.
  19. T.F. Kanzleiter, K.O. Fischer, H.J. Allelein, S. Schwarz, Thai multi-compartment containment experiments with atmosphere stratification, in: 11th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, France, 2005.
  20. CSNI, OECD/SETH-2 projectdPANDA and MISTRA experiments final summary report (investigation of key issues for the simulation of thermal-hydraulic conditions in water reactor containment), Nuclear Energy Agency, NEA/CSNI/R 5 (2012) 2012.
  21. S. Kuhn, Investigation of Heat Transfer from Condensing Steam-Gas Mixtures and Turbulent Films Flowing Downward inside a Vertical Tube, Ph. D. thesis, University of California, Berkeley, 1995.
  22. J. Su, Z. Sun, G. Fan, M. Ding, Experimental study of the effect of noncondensable gases on steam condensation over a vertical tube external surface, Nucl. Eng. Des. 262 (2013) 201-208, https://doi.org/10.1016/j.nucengdes.2013.05.002.
  23. J. Lee, G.-C. Park, H.K. Cho, Simulation of wall film condensation with noncondensable gases using wall function approach in component thermal hydraulic analysis code CUPID, J. Mech. Sci. Technol. 32 (2018) 1015-1023, https://doi.org/10.1007/s12206-018-0202-0.
  24. G. Vijaya Kumar, et al., Implementation of a CFD model for wall condensation in the presence of non-condensable gas mixtures, Appl. Therm. Eng. 187 (2021) 116546, https://doi.org/10.1016/j.applthermaleng.2021.116546.
  25. N.E. Todreas, M. Kazimi, Nuclear Systems: Thermal Hydraulic Fundamentals, second ed., vol. 1, CRC press, 2012.
  26. D. Paladino, et al., OECD/NEA HYMERES project: for the analysis and mitigation of a severe accident leading to hydrogen release into a nuclear plant containment, in: Proceedings of ICAPP 2014, Charlotte, USA, 2014. April 6-9, Paper 14322.
  27. E. Porcheron, P. Lemaitre, A. Nuboer, V. Rochas, J. Vendel, Experimental investigation in the TOSQAN facility of heat and mass transfers in a spray for containment application, Nucl. Eng. Des. 237 (2007) 1862-1871, https://doi.org/10.1016/j.nucengdes.2007.01.018.
  28. H.-J. Allelein, S. Arndt, W. Klein-Hessling, S. Schwarz, C. Spengler, G. Weber, COCOSYS: status of development and validation of the German containment code system, Nucl. Eng. Des. 238 (2008) 872-889, https://doi.org/10.1016/j.nucengdes.2007.08.006.
  29. D. Paladino, O. Auban, M. Huggenberger, J. Dreier, A PANDA integral test on the effect of light gas on a Passive Containment Cooling System (PCCS), Nucl. Eng. Des. 241 (2011) 4551-4561, https://doi.org/10.1016/j.nucengdes.2010.11.022.
  30. I. Kljenak, M. Babic, B. Mavko, I. Bajsic, Modeling of containment atmosphere mixing and stratification experiment using a CFD approach, Nucl. Eng. Des. 236 (2006) 1682-1692, https://doi.org/10.1016/j.nucengdes.2006.04.025.
  31. P. Royl, U.J. Lee, J.R. Travis, W. Breitung, D. Karlsruhe, Benchmarking of the 3D CFD code GASFLOW II with containment thermal hydraulic tests from HDR and Thai, in: CFD4NRS Conference, Munchen, 2006, pp. 685-702. September 5-7.
  32. S. Kelm, W. Jahn, E.A. Reinecke, H.J. Allelein, Passive auto-catalytic recombiner operationevalidation of a CFD approach against OECD-Thai HR2 test, in: Proceedings of OECD/NEA & IAEA Workshop on Experiments and CFD Codes Application to Nuclear Reactor Safety, vols. 9-13, 2012.
  33. D.C. Visser, M. Houkema, N.B. Siccama, E.M.J. Komen, Validation of a FLUENT CFD model for hydrogen distribution in a containment, Nucl. Eng. Des. 245 (2012) 161-171, https://doi.org/10.1016/j.nucengdes.2012.01.025.
  34. M. Andreani, D. Paladino, T. George, Simulation of basic gas mixing tests with condensation in the PANDA facility using the Gothic code, Nucl. Eng. Des. 240 (2010) 1528-1547, https://doi.org/10.1016/j.nucengdes.2010.02.021.
  35. J.-D. Li, CFD simulation of water vapour condensation in the presence of noncondensable gas in vertical cylindrical condensers, Int. J. Heat Mass Tran. 57 (2013) 708-721, https://doi.org/10.1016/j.ijheatmasstransfer.2012.10.051.
  36. G. Zschaeck, T. Frank, A.D. Burns, CFD modelling and validation of wall condensation in the presence of non-condensable gases, Nucl. Eng. Des. 279 (2014) 137-146, https://doi.org/10.1016/j.nucengdes.2014.03.007.
  37. S.G. Lim, H.C. No, S.W. Lee, H.G. Kim, J. Cheon, J.M. Lee, S.M. Ohk, Development of stability maps for flashing-induced instability in a passive containment cooling system for iPOWER, Nuclear Engineering and Technology 52 (1) (2020) 37-50, https://doi.org/10.1016/j.net.2019.06.026.
  38. G. Yadigaroglu, Computational Fluid Dynamics for nuclear applications: from CFD to multi-scale CMFD, Nucl. Eng. Des. 235 (2005) 153-164, https://doi.org/10.1016/j.nucengdes.2004.08.044.
  39. H. Yoon, CUPID Code Manual vol.1: Mathematical Models and Solution Methods, Korea Atomic Energy Research Institute, KAERI/TR-4403/2011, 2011.
  40. Korea Atomic Energy Research Institute, MARS Code Manual, KAERI/TR-3872/2009, 2009.
  41. J.R. Lee, H.Y. Yoon, Preliminary study for a PWR steam generator with CUPID/MARS multi-scale thermal-hydraulics simulation, Appl. Therm. Eng. 115 (2017) 1245-1254, https://doi.org/10.1016/j.applthermaleng.2016.08.079.
  42. H.K. Cho, Y.J. Cho, H.Y. Yoon, Heat structure coupling of CUPID and MARS for the multi-scale simulation of the passive auxiliary feedwater system, Nucl. Eng. Des. 273 (2014) 459-468, https://doi.org/10.1016/j.nucengdes.2014.03.017.
  43. C.-H. Song, T.-S. Kwon, B.-J. Yun, K.-Y. Choi, H.-Y. Kim, H.-G. Jun, H.-G. Kim, Thermal-hydraulic R&Ds for the APR+ Developments in Korea, 2010, pp. 823-828, https://doi.org/10.1115/ICONE18-29870.
  44. J. Lee, G.-C. Park, H.K. Cho, Improvement of CUPID code for simulating filmwise steam condensation in the presence of noncondensable gases, Nucl. Eng. Technol. 47 (2015) 567-578, https://doi.org/10.1016/j.net.2015.03.007.
  45. C.D. adapco, USER GUIDE STAR-CCM+ Version 13.02, CD-adapco, 2018.
  46. P.F. Peterson, Diffusion layer modeling for, Trans. ASME. 122 (2000) 716-720, https://doi.org/10.1115/1.1318215.
  47. S. Mimouni, A. Foissac, J. Lavieville, CFD modelling of wall steam condensation by a two-phase flow approach, Nucl. Eng. Des. 241 (2011) 4445-4455, https://doi.org/10.1016/j.nucengdes.2010.09.020.
  48. V. Kalra, CFD Validation and Scaling of Condensation Heat Transfer, Master Thesis, Missouri University of Science and Technology, 2017.
  49. S. Ghiaasiaan, Two-Phase Flow, Boiling and Condensation, Cambridge University Press, New York, 2008.