• 제목/요약/키워드: multi-degree-of-freedom

검색결과 297건 처리시간 0.028초

Design of a Vibration Absorber for an Elastically Suspended Rigid Body (단일 진동체의 진동 흡진기 설계 기법)

  • Kim, Dong-Wook;Choi, Yong-Je
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.190-197
    • /
    • 2002
  • A new design methodology is presented for the multi-degree-of-freedom vibration absorber for an elastically suspended rigid body with planes of symmetry in general motion. Unlike the common single degree-of-freedom vibration absorber, the presented methodology makes use of both linear and rotational properties of the absorber. It is suggested that an absorber is designed separately for the in-plane and out-of-plane vibration modes and thereby combined the two cases for a six-degree-of-freedom absorber. The nine possible design methods are suggested for the six-degree-of-freedom absorber when an elastically suspended rigid body has one, two, or three planes of symmetry.

  • PDF

Geometrical Design Theory of a 6 DOF Vibration Absorber (6자유도 진동 흡진기의 기하적 설계 이론)

  • Jang Seon Jun;Choi Yong Je
    • Journal of the Korean Society for Precision Engineering
    • /
    • 제22권7호
    • /
    • pp.191-199
    • /
    • 2005
  • Many researchers have been investigating the design of multi-mode absorption vibration absorber for multi degree-of-freedom (DOF) system. The approach taken to this problem has been to find the optimized constants of stiffness and damping for the given set of single-DOF absorbers or single multi-DOF absorber attached to a multi degree-of-freedom system. This paper presents a novel geometrical and direct design theory of a 6 DOF vibration absorber via screw theory. Theoretical development is demonstrated by a practical example in which the diagonal stiffness matrix is synthesized using rectangular configuration of springs. The performance of this absorber is simulated by modal analysis.

Forced Vibration Analysis of Engine Resilient Mounting System Modelled with Multi-mass and Multi-degree-of-freedom (다질점계로 모델링한 기관 탄성지지계의 강제진동 해석에 관한 연구)

  • 김성춘;김창남;변용수;김의간
    • Journal of KSNVE
    • /
    • 제10권5호
    • /
    • pp.775-782
    • /
    • 2000
  • Being carried out a number of studies for the resilient mounting system of automobile engine than that of the studies for marine engines, many research results for the case of the resilient mounting system of the automobile engine have applied in the analysis for the case of marine engine. However, the size and the power of automobile engines are not only relatively small but also their operating conditions are quite different form those of marine engines. For the analysis of the automobile engine Wavelet shrinkage, misfire condition and unload condition have not been considered. Accordingly , it is not desirable to apply the results obtained form the case of automobile engines to the case of marine engines. In this study , exciting and damping forces working on the marine engine are formulated mathematically in order to apply to the design of a resilient mounting system of engine effectively. futhermore, some mathematical formulation for the analysis of the transmissibility of multi-body system are proposed. A new computer program which is able to calculate the free vibration, the transmissibility and the forced vibration of a resilient mounting system has been developed, As an application of this developed computer program, the dynamic behavior of resilient system with an actual rubber spring for the case of 6-degree-of-freedom system and 36-degree-of-freedom system are evaluated quantitatively.

  • PDF

Seismic reliability analysis of structures based on cumulative damage failure mechanism

  • Liu, Qiang;Wang, Miaofang
    • Earthquakes and Structures
    • /
    • 제18권4호
    • /
    • pp.519-526
    • /
    • 2020
  • Non-stationary random seismic response and reliability of multi-degree of freedom hysteretic structure system are studied based on the cumulative damage failure mechanism. First, dynamic Eqs. of multi-degree of freedom hysteretic structure system under earthquake action are established. Secondly, the random seismic response of a multi-degree freedom hysteretic structure system is investigated by the combination of virtual excitation and precise integration. Finally, according to the damage state level of structural, the different damage state probability of high-rise frame structure is calculated based on the boundary value of the cumulative damage index in the seismic intensity earthquake area. The results show that under the same earthquake intensity and the same floor quality and stiffness, the lower the floor is, the greater the damage probability of the building structure is; if the structural floor stiffness changes abruptly, the weak layer will be formed, and the cumulative damage probability will be the largest, and the reliability index will be relatively small. Meanwhile, with the increase of fortification intensity, the reliability of three-level structure fortification is also significantly reduced. This method can solve the problem of non-stationary random seismic response and reliability of high-rise buildings, and it has high efficiency and practicability. It is instructive for structural performance design and estimating the age of the structure.

Optimal extended homotopy analysis method for Multi-Degree-of-Freedom nonlinear dynamical systems and its application

  • Qian, Y.H.;Zhang, Y.F.
    • Structural Engineering and Mechanics
    • /
    • 제61권1호
    • /
    • pp.105-116
    • /
    • 2017
  • In this paper, the optimal extended homotopy analysis method (OEHAM) is introduced to deal with the damped Duffing resonator driven by a van der Pol oscillator, which can be described as a complex Multi-Degree-of-Freedom (MDOF) nonlinear coupling system. Ecumenically, the exact solutions of the MDOF nonlinear coupling systems are difficult to be obtained, thus the development of analytical approximation becomes an effective and meaningful approach to analyze these systems. Compared with traditional perturbation methods, HAM is more valid and available, and has been widely used for nonlinear problems in recent years. Hence, the method will be chosen to study the system in this article. In order to acquire more suitable solutions, we put forward HAM to the OEHAM. For the sake of verifying the accuracy of the above method, a series of comparisons are introduced between the results received by the OEHAM and the numerical integration method. The results in this article demonstrate that the OEHAM is an effective and robust technique for MDOF nonlinear coupling systems. Besides, the presented methods can also be broadly used for various strongly nonlinear MDOF dynamical systems.

Estimation of earthquake induced story hysteretic energy of multi-Story buildings

  • Wang, Feng;Zhang, Ning;Huang, Zhiyu
    • Earthquakes and Structures
    • /
    • 제11권1호
    • /
    • pp.165-178
    • /
    • 2016
  • The goal of energy-based seismic design is to obtain a structural design with a higher energy dissipation capacity than the energy dissipation demands incurred under earthquake motions. Accurate estimation of the story hysteretic energy demand of a multi-story structure is the key to meeting this goal. Based on the assumption of a mode-equivalent single-degree-of-freedom system, the energy equilibrium relationship of a multi-story structure under seismic action is transformed into that of a multi-mode analysis of several single degree-of-freedom systems. A simplified equation for the estimation of the story seismic hysteretic energy demand was then derived according to the story shear force and deformation of multi-story buildings, and the deformation and energy relationships between the mode-equivalent single-degree-of-freedom system and the original structure. Sites were categorized into three types based on soil hardness, namely, hard soil, intermediate hard (soft) soil, and soft soil. For each site type, a 5-story and 10-story reinforced concrete frame structure were designed and employed as calculation examples. Fifty-six earthquake acceleration records were used as horizontal excitations to validate the accuracy of the proposed method. The results verify the following. (1) The distribution of seismic hysteretic energy along the stories demonstrate a degree of regularity. (2) For the low rise buildings, use of only the first mode shape provides reasonably accurate results, whereas, for the medium or high rise buildings, several mode shapes should be included and superposed to achieve high precision. (3) The estimated hysteretic energy distribution of bottom stories tends to be underestimated, which should be modified in actual applications.

A Study on Vibration Control of Multi-layer Structure(I) (다층 층상 구조물의 진동제어에 관한 연구 (I))

  • Jeong, Hae-Jong;Byeon, Jeong-Hwan;Yang, Ju-Ho
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • 제33권2호
    • /
    • pp.141-148
    • /
    • 1997
  • This paper is concerned with the vibration control of multi-layer structure for ultra-tall buildings and main tower of large bridge etc. We have modeled the multi-layer structure with the distributed mass system as the lumped mass system of two-degree-of-freedom structure and made experimental equipment. The LQ optimal control theory is applied to the design of the control system. The designed control system is simulated by computer. As a result, the LQ regulator showed good vibration control performance with impact excitation.

  • PDF

A Study of Vibration Control of a Slender Structure Using a Multi-Degree-of-Freedom Manipulator (다 자유도 운동장치를 이용한 세장구조물의 진동제어 연구)

  • Kim, Nak-In;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • 제25권8호
    • /
    • pp.1227-1234
    • /
    • 2001
  • A multi d.o.f robotic manipulator is considered for multi-axis vibration control of a slender structure, using the concept of the flow source based vibration control. In order not to cause the motion saturation of the manipulator system, a hybrid dynamics associated with the flexible and desired manipulator error dynamics is also modeled as the control object. It is numerically shown that the flexible vibrations and the base motions of a test structure can be effectively controlled with the proposed hybrid dynamics.

Optimal Vibration Control of Rigid Plate Elastically Supported at the Edges (끝단이 탄성 지지된 강체판의 최적진동제어)

  • Lee, Seong-Ki;Yun, Shin-Il;Han, Sang-Bo
    • Proceedings of the KSME Conference
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.828-833
    • /
    • 2003
  • Rigid plate elastically supported at the edges is modeled and the performance of the optimal vibration control under sinusoidal excitation is tested. The controller based on the linear quadratic regulator with output feedback is designed to control the multi-degree of freedom vibration. Relative weighting parameters are considered as design constraints to determine the limitation of maximum control force and state parameters. Control force calculated by proportional output feedback of the displacement and velocity is used to suppress the vibration induced by the sinusoidal external force. The active vibration control of vibrating plate by the LQR controller is examined through the numerical simulations that show the effectiveness of optimal control scheme on the three degrees of freedom structure.

  • PDF

Object Pose Estimation and Motion Planning for Service Automation System (서비스 자동화 시스템을 위한 물체 자세 인식 및 동작 계획)

  • Youngwoo Kwon;Dongyoung Lee;Hosun Kang;Jiwook Choi;Inho Lee
    • The Journal of Korea Robotics Society
    • /
    • 제19권2호
    • /
    • pp.176-187
    • /
    • 2024
  • Recently, automated solutions using collaborative robots have been emerging in various industries. Their primary functions include Pick & Place, Peg in the Hole, fastening and assembly, welding, and more, which are being utilized and researched in various fields. The application of these robots varies depending on the characteristics of the grippers attached to the end of the collaborative robots. To grasp a variety of objects, a gripper with a high degree of freedom is required. In this paper, we propose a service automation system using a multi-degree-of-freedom gripper, collaborative robots, and vision sensors. Assuming various products are placed at a checkout counter, we use three cameras to recognize the objects, estimate their pose, and create grasping points for grasping. The grasping points are grasped by the multi-degree-of-freedom gripper, and experiments are conducted to recognize barcodes, a key task in service automation. To recognize objects, we used a CNN (Convolutional Neural Network) based algorithm and point cloud to estimate the object's 6D pose. Using the recognized object's 6d pose information, we create grasping points for the multi-degree-of-freedom gripper and perform re-grasping in a direction that facilitates barcode scanning. The experiment was conducted with four selected objects, progressing through identification, 6D pose estimation, and grasping, recording the success and failure of barcode recognition to prove the effectiveness of the proposed system.