• 제목/요약/키워드: multi-classification

검색결과 1,249건 처리시간 0.023초

Small-Scale Object Detection Label Reassignment Strategy

  • An, Jung-In;Kim, Yoon;Choi, Hyun-Soo
    • 한국컴퓨터정보학회논문지
    • /
    • 제27권12호
    • /
    • pp.77-84
    • /
    • 2022
  • 본 논문은 객체 위치식별 알고리즘의 성능을 향상하기 위한 레이블 재할당 방법을 제안한다. 제안한 방법은 추론 단계와 재할당 단계로 구분한다. 추론 단계에서는 학습된 모델로부터 사전 지정된 크기에 따라 다중 스케일 추론을 수행한 뒤, 이를 마스킹한 영상을 다시 한번 추론하여 강인한 클래스 종류의 추론 결과를 얻는다. 재할당 단계에서는 박스간의 IoU를 계산하여 중복 박스를 제거하고, 박스와 클래스의 빈도를 계산하여 지배적 클래스를 다시 할당하였다. 제안한 방법을 검증하기 위하여 공사현장 안전장비 인식 영상 데이터 세트에 레이블 재할당 방법을 적용하고 이를 YOLOX-L 객체 탐지 모델에서 학습하였다. 실험 결과 적용 전 대비 mAP가 3.9% 향상하여 51.07%를 달성하였으며 AP_S를 3배 이상 향상하여 14.53%를 달성하였다. 실험 결과를 통해 레이블 재할당 알고리즘이 더 우수한 성능의 모델을 훈련해 냄을 확인하였다.

기계학습에 의한 후두 장애음성 식별기의 성능 비교 (Performance comparison on vocal cords disordered voice discrimination via machine learning methods)

  • 조철우;왕수건;권익환
    • 말소리와 음성과학
    • /
    • 제14권4호
    • /
    • pp.35-43
    • /
    • 2022
  • 본 논문은 후두 장애음성 데이터의 식별률을 CNN과 기계학습 앙상블 학습 방법에 의해 개선하는 방법에 대한 연구이다. 일반적으로 후두 장애음성 데이터는 그 수가 적으므로 통계적 방법에 의해 식별기가 구성되더라도, 훈련 방식에 따라 과적합으로 인해 일어나는 현상으로 인해 외부 데이터에 노출될 시 식별률의 저하가 발생할 수 있다. 본 연구에서는 다양한 정확도를 갖도록 훈련된 CNN 모델과 기계학습 모델로부터 도출된 결과를 다중 투표 방식으로 결합하여 원래의 훈련된 모델에 비해 향상된 분류 효율을 갖도록 하는 방법과 함께, 기존의 기계학습 중 앙상블 방법을 적용해 보고 그 결과를 확인하였다. 알고리즘을 훈련하고 검증하기 위해 PNUH(Pusan National University Hospital) 데이터셋을 이용하였다. 데이터셋에는 정상음성과 양성종양 및 악성 종양의 음성 데이터가 포함되어 있다. 실험에서는 정상 및 양성 종양과 악성종양을 구분하는 시도를 하였다. 실험결과 random forest 방법이 가장 우수한 앙상블 방법으로 나타났으며 85%의 식별률을 보였다.

불균형 데이터를 갖는 냉동 컨테이너 고장 판별 및 원인 분석을 위한 기계학습 모형 개발 (Development of machine learning model for reefer container failure determination and cause analysis with unbalanced data)

  • 이희원;박성호;이승현;이승재;이강배
    • 한국융합학회논문지
    • /
    • 제13권1호
    • /
    • pp.23-30
    • /
    • 2022
  • 냉동 컨테이너의 고장은 큰 비용의 손실을 야기하지만, 현재 냉동 컨테이너의 알람 체계는 효율성이 떨어진다. 기존에 냉동 시스템의 시뮬레이션 데이터를 활용한 연구는 존재하지만, 냉동 컨테이너의 실제 운영 데이터를 활용한 연구는 부족하다. 이에 본 연구는 실제 냉동 컨테이너 운영 데이터를 활용하여 고장 원인을 분류하였다. 실제 데이터에서는 데이터 불균형이 발생하였으며 ENN-SMOTE, 클래스 가중치를 둔 Logistic 회귀분석과 본 연구에서 개발한 2-stage 알고리즘을 비교하여 데이터 불균형문제를 해결하였다. 2-stage 알고리즘은 XGboost, LGBoost, DNN을 사용하여 첫 번째 단계에서는 고장 및 정상을 분류하고, 두 번째 단계에서는 고장의 원인을 분류하는 알고리즘이다. 2-stage 알고리즘에서 LGBoost를 사용한 모델이 99.16%의 정확도로 가장 우수하였다. 본 연구는 데이터 불균형을 해결하기 위해 2-stage 알고리즘을 활용한 최종모델을 제안하며 이는 다른 산업에도 활용할 수 있을 것으로 사료된다.

Energy-efficient intrusion detection system for secure acoustic communication in under water sensor networks

  • N. Nithiyanandam;C. Mahesh;S.P. Raja;S. Jeyapriyanga;T. Selva Banu Priya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권6호
    • /
    • pp.1706-1727
    • /
    • 2023
  • Under Water Sensor Networks (UWSN) has gained attraction among various communities for its potential applications like acoustic monitoring, 3D mapping, tsunami detection, oil spill monitoring, and target tracking. Unlike terrestrial sensor networks, it performs an acoustic mode of communication to carry out collaborative tasks. Typically, surface sink nodes are deployed for aggregating acoustic phenomena collected from the underwater sensors through the multi-hop path. In this context, UWSN is constrained by factors such as lower bandwidth, high propagation delay, and limited battery power. Also, the vulnerabilities to compromise the aquatic environment are in growing numbers. The paper proposes an Energy-Efficient standalone Intrusion Detection System (EEIDS) to entail the acoustic environment against malicious attacks and improve the network lifetime. In EEIDS, attributes such as node ID, residual energy, and depth value are verified for forwarding the data packets in a secured path and stabilizing the nodes' energy levels. Initially, for each node, three agents are modeled to perform the assigned responsibilities. For instance, ID agent verifies the node's authentication of the node, EN agent checks for the residual energy of the node, and D agent substantiates the depth value of each node. Next, the classification of normal and malevolent nodes is performed by determining the score for each node. Furthermore, the proposed system utilizes the sheep-flock heredity algorithm to validate the input attributes using the optimized probability values stored in the training dataset. This assists in finding out the best-fit motes in the UWSN. Significantly, the proposed system detects and isolates the malicious nodes with tampered credentials and nodes with lower residual energy in minimal time. The parameters such as the time taken for malicious node detection, network lifetime, energy consumption, and delivery ratio are investigated using simulation tools. Comparison results show that the proposed EEIDS outperforms the existing acoustic security systems.

Genomic Analysis of the Carrot Bacterial Blight Pathogen Xanthomonas hortorum pv. carotae in Korea

  • Mi-Hyun Lee;Sung-Jun Hong;Dong Suk Park;Hyeonheui Ham;Hyun Gi Kong
    • The Plant Pathology Journal
    • /
    • 제39권4호
    • /
    • pp.409-416
    • /
    • 2023
  • Bacterial leaf blight of carrots caused by Xanthomonas hortorum pv. carotae (Xhc) is an important worldwide seed-borne disease. In 2012 and 2013, symptoms similar to bacterial leaf blight were found in carrot farms in Jeju Island, Korea. The phenotypic characteristics of the Korean isolation strains were similar to the type strain of Xhc. Pathogenicity showed symptoms on the 14th day after inoculation on carrot plants. Identification by genetic method was multi-position sequencing of the isolated strain JJ2001 was performed using four genes (danK, gyrB, fyuA, and rpoD). The isolated strain was confirmed to be most similar to Xhc M081. Furthermore, in order to analyze the genetic characteristics of the isolated strain, whole genome analysis was performed through the next-generation sequencing method. The draft genome size of JJ2001 is 5,443,372 bp, which contains 63.57% of G + C and has 4,547 open reading frames. Specifically, the classification of pathovar can be confirmed to be similar to that of the host lineage. Plant pathogenic factors and determinants of the majority of the secretion system are conserved in strain JJ2001. This genetic information enables detailed comparative analysis in the pathovar stage of pathogenic bacteria. Furthermore, these findings provide basic data for the distribution and diagnosis of Xanthomonas hortorum pv. carotae, a major plant pathogen that infects carrots in Korea.

코로나-19 이후 시대에 생활SOC 시설의 설치·운영을 위한 우리나라 생활권의 설정과 유형 구분 연구 (Studying Life Zone Determination and Classification of South Korea for Providing and Operating Living SOC Facilities in the Post-COVID-19 Era)

  • 김희재;김근영
    • 한국재난정보학회 논문집
    • /
    • 제20권2호
    • /
    • pp.448-461
    • /
    • 2024
  • 연구목적: 본 연구는 포스트 코로나 시대에 생활 SOC 시설을 설치하고, 운영하기 위해 우리나라 특성에 적합한 생활권 위계를 설정하고, 유형을 구분하는 것을 목적으로 한다. 연구방법: 생활권과 관련된 정책과 선행연구들을 통해 생활권의 개념을 정립하였고, 생활권 위계에 따라 생활권의 유형을 인구, 고용, 교통, 경제, 교육 등 다양한 분야의 데이터를 z-score 기법을 이용하여 유형구분을 하였다. 연구결과: 우리나라 생활권은 규모에 따라 광역생활권, 권역생활권, 도시생활권, 마을생활권, 동네생활권으로 구분할 수 있으며, 역할에 따라 중심생활권, 직주균형생활권, 주거생활권, 산업생활권, 저밀생활권으로 유형구분을 할 수 있다. 결론: 본 연구의 결과는 타당한 생활권 설정과 적절한 생활 SOC공급은 낙후지역의 쇠퇴를 막고, 지역 간 균형발전에 기여할 수 있다

뇌전증 환자의 MEG 데이터에 대한 분류를 위한 인공신경망 적용 연구 (Artificial neural network for classifying with epilepsy MEG data)

  • 한유진;김준식;김재희
    • 응용통계연구
    • /
    • 제37권2호
    • /
    • pp.139-155
    • /
    • 2024
  • 본 연구는 좌측 해마 경화를 보인 내측두엽 뇌전증(left mTLE, mesial temporal lobe epilepsy with left hippocampal sclerosis) 환자군과 우측 해마 경화를 보인 내측두엽 뇌전증(right mTLE, mesial temporal lobe epilepsy with right hippocampal sclerosis) 환자군 그리고 건강한 대조군(healthy controls; HC)으로부터 측정한 뇌자도(magnetoencephalography; MEG) 데이터로 각 그룹을 분류하는 다중 분류 작업에 다양한 인공신경망을 적용하고 그 결과를 비교해 보고자 하였다. 합성곱 신경망, 순환 신경망 그리고 그래프 신경망으로 모델링한 결과, k-fold 정확도 평균은 합성곱 신경망 기반 모델, 그래프 신경망 기반 모델, 순환 신경망 기반 모델 순으로 우수하였다. 또한, 수행 시간은 순환 신경망 기반 모델, 그래프 신경망 기반 모델, 합성곱 신경망 기반 모델 순으로 우수하였다. 정확도 성능과 시간 면에서 모두 좋은 수치를 보이며, 네트워크 데이터의 확장성이 뛰어난 그래프 신경망이 앞으로 뇌 연구에 활용되기 적합한 모델임을 강조하고자 한다.

구글 버텍스 AI을 이용한 치과 X선 영상진단 유용성 평가 (Preliminary Test of Google Vertex Artificial Intelligence in Root Dental X-ray Imaging Diagnosis)

  • 정현자
    • 한국방사선학회논문지
    • /
    • 제18권3호
    • /
    • pp.267-273
    • /
    • 2024
  • 본 연구에서는 코딩없이 인공지능 학습 모델을 개발할 수 있는 클라우드 기반의 버텍스 AI 플렛폼을 이용하여 비전문가인 일반인들이 손쉽게 인공지능 학습 모델을 개발하였고 임상적 적용가능성을 확인하였다. 학습용 데이터는 캐글 사이트에 공개된 총9개 치과 질환, 2,999장 치근병 X선 영상을 사용하였고, 무작위로 학습, 검증 및 테스트 데이터 이미지를 분류하였다. 버텍스 AI의 기본 학습모델 워크플로우에서 학습 파이프라인을 사용하여 하이퍼 파라미터 조정작업을 통해 영상분류, 멀티레이블 학습을 수행하였다. Auto ML을 수행한 결과 AUC가 0.967, 정밀도는 95.6%, 재현율은 95.2%로 나타났으며, 학습된 인공지능 모델이 임상적 진단에 충분한 의미가 있음을 확인하였다.

설명가능한 의사결정을 위한 마이닝 기술 (Research on Mining Technology for Explainable Decision Making)

  • 정경용
    • 융합신호처리학회논문지
    • /
    • 제24권4호
    • /
    • pp.186-191
    • /
    • 2023
  • 데이터 처리 기술은 의사결정을 위해 중요한 역할을 하며, 데이터 결측값 및 이상값 처리, 예측, 추천 모델 등이 포함 된다. 이는 모든 과정과 결과의 타당성, 신뢰성, 정확성에 대한 명확한 설명이 필요하다. 또한 의사결정트리, 추론 등을 이용한 설명가능한 모델을 통해 데이터의 문제를 해결하고, 다양한 유형의 학습을 고려하여 모델 경량화를 진행할 필요가 있다. 육하원칙을 적용한 다중 계층 마이닝 분류 방법은 데이터 전처리 후 트랜잭션에서 빈번하게 발생하는 변수와 속성 간의 다차원 관계를 발견하는 방법이다. 이는 트랜잭션에서 마이닝을 이용하여 유의미한 관계를 발견하고, 회귀분석을 통해 데이터를 모델링 하는 방법을 설명한다. 이에따라 확장 가능한 모델과 로지스틱 회귀모델을 개발하고, 데이터 정제, 관련성 분석, 데이터 변환, 데이터 증강을 통해 클래스 레이블을 생성하여 설명가능한 의사결정을 위한 미이닝 기술을 제안한다.

스펙트로그램을 이용한 CNN 음성인식 모델 (Speech Recognition Model Based on CNN using Spectrogram)

  • 정원석;이행우
    • 한국전자통신학회논문지
    • /
    • 제19권4호
    • /
    • pp.685-692
    • /
    • 2024
  • 본 논문에서는 명령어 음성신호의 인식 성능을 개선하기 위한 새로운 합성곱 신경망(CNN: Convolutional Neural Network) 모델을 제안한다. 이 방법은 입력신호의 단구간 푸리에 변환(STFT: Short-Time Fourier Transform) 후 스펙트로그램 이미지를 구하고 CNN 모델을 이용한 지도학습을 통하여 명령어 인식 성능을 개선하였다. 입력신호를 단시간 구간별로 푸리에 변환한 다음 스펙트로그램 이미지를 구하고 CNN 딥러닝 모델을 이용하여 다중 분류 학습을 수행한다. 이는 시간영역 음성신호를 특성이 잘 표현되도록 주파수영역으로 변환하고 변환 파라미터에 대한 스펙트로그램 이미지를 이용하여 딥러닝 훈련을 수행함으로써 명령어를 효과적으로 분류한다. 본 연구에서 제안한 음성인식시스템의 성능을 검증하기 위하여 Tensorflow와 Keras 라이브러리를 사용한 시뮬레이션 프로그램을 작성하고 모의실험을 수행하였다. 실험 결과, 제안한 심층학습 알고리즘을 이용하면 92.5%의 정확도를 얻을 수 있는 것으로 확인되었다.