• Title/Summary/Keyword: multi-channel MAC

Search Result 92, Processing Time 0.022 seconds

TDMA based Multi-channel MAC Protocol for Improving Channel Efficiency in Wireless Ad Hoc Networks (무선 애드혹 네트워크에서 채널 효율성 향상을 위한 TDMA 기반의 멀티채널 MAC 프로토콜)

  • Kim, Jun-Ho;Choi, Jae-Kark;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.2A
    • /
    • pp.153-164
    • /
    • 2010
  • In this paper, we propose a multi-channel MAC protocol to improve the channel efficiency and network performance in wireless ad hoc networks. There are two main problems encountered in designing multi-channel MAC protocols. The first problem is the rendezvous problem and the second is multi-channel hidden node problem. In order to solve these problems, most of previous researches that have considered multi-channel MAC protocols use a common control channel to exchange control packets. However, they have a bottleneck problem at common control channel as increasing the number of data channels. The proposed MAC protocol solves the multi-channel hidden node problem using a TDMA scheme and increases the network throughput because transmitting and receiving data at the same time is possible. Also, since there is no common control channel, the network does not suffer from the common control channel saturation problem. Moreover, it achieves energy savings by allowing nodes that are not involved in communication to go into sleep mode. Simulation results show that the proposed MAC protocol improves the network throughput and channel efficiency and provides energy savings.

A Novel Multi-channel MAC Protocol for Ad hoc Networks

  • Dang, Duc Ngoc Minh;Quang, Nguyen Tran;Hong, Choong-Seon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06d
    • /
    • pp.187-189
    • /
    • 2012
  • The medium access control (MAC) protocol is designed only for single channel in the IEEE 802.11 standard. That means the throughput of the network is limited by the bandwidth of the single channel. The multiple channels can be exploited to get more concurrent transmission. In this paper, we propose a novel Multi-channel MAC that utilizes the channel more efficiently than other Multi-channel MAC protocols.

A Study on Multi-Channel Multi-Interface MAC Protocols for Mesh Networks (Mesh Networks을 위한 다중채널 다중인터페이스 MAC 프로토콜에 관한 연구)

  • Kim, Young-Beom
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.7
    • /
    • pp.1465-1470
    • /
    • 2011
  • In this paper, we propose a new MAC protocol, namely DM-MMAC (Doze Mode Multi-Channel MAC) for ad hoe wireless networks which can utilize multiple channels effectively, thereby enhancing the network throughput considerably. Basically, the IEEE 802.11 specification allows for the use of multiple channels available at the physical layer, but its MAC protocol is designed only for a single channel with the fatal drawback, so called multi-channel hidden terminal problem in multi-channel environments. In this vein, several multi-channel MAC protocols have been proposed, but most of them demonstrate the performance problem that its throughput drastically decreases as the number of mobile hosts residing in a given network increases with small number of available channels. In this work, we tried to improve the performance of multi-channel MAC protocols in terms of network throughput as well as power saving effects by simplifying the channel assignment and channel capturing procedures and reducing the possibility of collisions between mobile hosts.

UMMAC: A Multi-Channel MAC Protocol for Underwater Acoustic Networks

  • Su, Yishan;Jin, Zhigang
    • Journal of Communications and Networks
    • /
    • v.18 no.1
    • /
    • pp.75-83
    • /
    • 2016
  • In this paper, we propose a multi-channel medium access control (MAC) protocol, named underwater multi-channel MAC protocol (UMMAC), for underwater acoustic networks (UANs). UMMAC is a split phase and reservation based multi-channel MAC protocol which enables hosts to utilize multiple channels via a channel allocation and power control algorithm (CAPC). In UMMAC, channel information of neighboring nodes is gathered via exchange of control packets. With such information, UMMAC allows for as many parallel transmissions as possible while avoiding using extra time slot for channel negotiation. By running CAPC algorithm, which aims at maximizing the network's capacity, users can allocate their transmission power and channels in a distributed way. The advantages of the proposed protocol are threefold: 1) Only one transceiver is needed for each node; 2) based on CAPC, hosts are coordinated to negotiate the channels and control power in a distributed way; 3) comparing with existing RTS/CTS MAC protocols, UMMAC do not introduce new overhead for channel negotiation. Simulation results show that UMMAC outperforms Slotted floor acquisition multiple access (FAMA) and multi-channel MAC (MMAC) in terms of network goodput (50% and 17% respectively in a certain scenario). Furthermore, UMMAC can lower the end-to-end delay and achieves a lower energy consumption compared to Slotted FAMA and MMAC.

SPMC-MAC : Slim Preamble Multi-Channel MAC Protocol with Transmission Power Control in Wireless Sensor Networks (무선 센서 네트워크에서 다중 채널과 전송세기 제어를 이용한 맥 프로토콜)

  • Yoon, Jang-Muk;Bahk, Sae-Woong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.10B
    • /
    • pp.876-884
    • /
    • 2008
  • In this paper, we propose an asynchronous MAC protocol to minimize energy usage and to maximize data throughput for a wireless sensor network in multi channel environments. Our proposed SPMC-MAC (Slim Preamble Multi-Channel Media Access Control) adopts the preamble sliming mechanism proposed in [6] that takes advantage of the knowledge about the wakeup time of the receiver node. The preamble contains the receiver's ID and a randomly selected channel ID for data communication, and it is transmitted over a dedicated common channel. The power control has the benefit of keeping an appropriate number of nodes with the communication range, resulting in reduced collision and interference. We compare our SPMC-MAC and X-MAC extensively in terms of energy consumption and throughput using mathematical analysis and simulation.

Delay-Optimized Adaptive Multichannel Backoff Mechanism for VANET (VANET을 위한 지연 최적화 적응적 멀티 채널 백오프 메카니즘)

  • Lee, Jung-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.5
    • /
    • pp.837-844
    • /
    • 2019
  • In this paper, we propose the AMBM(: Adaptive Multi-channel Backoff Machisum) -Mac protocol to provide high throughput for non-safety applications in VANET(: Vehicular Ad Hoc Networks) environment. The proposed protocol guarantees the quality of service of non-safety packets by dynamically adjusting CW(: Channel Window) of WSA(: WAVE Service Advertisement) to maximize throughput between non-safety packets of different priority. It also shows that allocating a large amount of time for channel coordination and time slot reservation for SC and dynamically adjusting CW and CCI as nodes increase to reduces transmission delay than IEEE 1609.9, C-MAC(: Coordinated multi-channel MAC, and Q-VCI(: QoS Variable CCH Interval) protocols.

Multi-channel MAC Protocol for Improving Channel Efficiency in Wireless Networks (무선 네트워크에서 채널 효율성을 높이기 위한 멀티채널 MAC 프로토콜)

  • Kim, Young-Kyoung;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.5A
    • /
    • pp.549-560
    • /
    • 2008
  • In this paper, we propose a new multi-channel MAC protocol to improve the channel efficiency by using two interfaces. Most of previous researches that have considered multi-channel wireless network environments use a common control channel to exchange control signals and they have a bottle neck problem at common control channel as increasing the number of data channels. In the proposed MAC protocol, we separate receiving and transmitting channels so that sending and receiving data and control packets at the same time is possible. It increases the total network throughput. Since there is no common control channel, the network does not suffer from the bottle neck problem. By applying a TDMA scheme, we can avoid packet collisions between data packets and control packets and reduce the possibility of CTS or ACK packet collisions. Simulation results show that the proposed multi-channel MAC protocol improves the total network throughput and channel efficiency compared with the existing method.

IEEE 802.11 MAC based Multi-hop Reservation and Backoff Scheme in MIMC Tactical Ad Hoc Networks (전술 애드 혹 네트워크에서 다중 홉 전송을 위한 자원 예약 및 백오프 기법)

  • Cho, Youn-Chul;Yoon, Sun-Joong;Ko, Young-Bae
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.15 no.1
    • /
    • pp.16-27
    • /
    • 2012
  • In multi-interface multi-channel(MIMC) based tactical ad hoc networks, QoS support for required operational capacity is one of the main challenging issues for multi-hop transmissions. To support QoS in such a harsh environment, we propose a novel MAC scheme to minimize multi-hop as well as per-hop delay. The current IEEE 802.11 MAC protocols should contend to reserve the channel resource at every hop by each sender. The every-hop channel contention results in a degradation of end-to-end delay for multi-hop transmissions. The basic idea of our scheme is to make a "multi-hop reservation" at the MAC layer by using the modified RTS frame. It contains additional information such as destination information, packet priority, and hop count, etc. In addition, we differentiate the contention window area according to the packet priority and the number of hops to deliver packets in the predefined allowed latency. Our scheme can minimize the multi-hop delay and support the QoS of the critical data in real time(i.e., VoIP, sensing video data, Video conference between commanders). Our simulation study and numerical analysis show that the proposed scheme outperforms the IEEE 802.11 MAC.

WAVE based Multi-Channel MAC(MCM) Technology for Reliable Vehicle Safety Message Service (신뢰성 높은 차량 안전 서비스를 위한 WAVE 기반 Multi-Channel MAC 기술)

  • Park, Jong-Min;Oh, Hyun-Seo;Cho, Sung-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.4
    • /
    • pp.78-85
    • /
    • 2011
  • In vehicle ad-hoc network (VANET) environments, traffic related information such as accident information, emergency information and real time traffic condition have to be delivered to on-board-unit (OBU) or/and road-side-equipment (RSE) for preventing traffic accidents in advance. In this paper, we introduce a Multi-Channel MAC (MCM) since the existing single channel operation may cause packet transmission delay and unexpected communication failure. To offer a seamless safety message transmission during the various services, it is necessary to manage the MAC scheduler in wireless access in vehicular environments (WAVE) systems. The MCM consists of MAC softwares and MAC hardwares where the former and the later ones are implemented with real time operation system based C language and FPGA module with VHDL language, respectively. The performance and QoS are verified by practical measurements and compared with the scheme using single channel operation.

ISRMC-MAC: Implementable Single-Radio, Multi-Channel MAC Protocol for WBANs

  • Cho, Kunryun;Jeon, Seokhee;Cho, Jinsung;Lee, Ben
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.3
    • /
    • pp.1052-1070
    • /
    • 2016
  • Wireless Body Area Networks (WBANs) have received a lot of attention as a promising technology for medical and healthcare applications. A WBAN should guarantee energy efficiency, data reliability, and low data latency because it uses tiny sensors that have limited energy and deals with medical data that needs to be timely and correctly transferred. To satisfy this requirement, many multi-radio multi-channel MAC protocols have been proposed, but these cannot be implemented on current off-the-shelf sensor nodes because they do not support multi-radio transceivers. Thus, recently single-radio multi-channel MAC protocols have been proposed; however, these methods are energy inefficient due to data duplication. This paper proposes a TDMA-based single-radio, multi-channel MAC protocol that uses the Unbalanced Star+Mesh topology to satisfy the requirements of WBANs. Our analytical analysis together experiments using real sensor nodes show that the proposed protocol outperforms existing methods in terms of energy efficiency, reliability, and low data latency.