Sequential pattern mining is an important data mining problem with broad applications. While the current methods are generating sequential patterns within a single attribute, the proposed method is able to detect them among different attributes. By incorporating these additional attributes, the sequential patterns found are richer and more informative to the user This paper proposes a new method for generating multi-dimensional sequential patterns with the use of Hellinger entropy measure. Unlike the Previously used methods, the proposed method can calculate the significance of each sequential pattern. Two theorems are proposed to reduce the computational complexity of the proposed system. The proposed method is tested on some synthesized purchase transaction databases.
스마트폰의 보급에 따라 사용자간에 공유되는 정보가 점점 늘어나고 있다. 시간표 관리 시스템의 경우 과거에는 개별 사용자의 시간표를 관리하는 것이 주요 기능이었으나, 사용자간의 시간표를 비교함으로써 공통으로 가능한 비어있는 시간을 찾는 등 공유 기능에 대한 필요성이 증대되고 있다. 본 논문에서는 이화여대 학생들에게 특화된 편의성과 공유기능을 제공하는 시간표 관리 어플리케이션과 서버 프로그램을 설계하고 개발한다. 제공되는 편의성으로는 사용자가 자신의 시간표를 직접 입력하는 것이 아니라 이화 포탈(eportal.ewha.ac.kr)에서 내 시간표 정보를 자동으로 바로 받아 볼 수 있는 기능과 관련 교과목의 담당교수와 강의실 등의 추가적인 정보가 같이 저장되도록 하여 시간표 작성 시간이 획기적으로 줄일 수 있도록 한다. 또한 모든 사용자가 계정을 등록하여 타 사용자와 함께 듣는 수업과 공강 시간을 자동으로 계산해서 보여주는 공유 기능을 제공한다. 사용자 피드백을 통한 본 논문에서 개발된 시스템을 평가한 결과 편의성과 공유 기능에 만족함을 확인하였다.
This paper presents a shared data decomposition model for improving concurrency in multi-user, distributed software developments. In our model, the target software system is decomposed into the independent components based on project roles to be distributed over clients. The distributed components are decomposed into view objects and core objects to replicate only view objects in a distributed collaboration session. The core objects are kept in only one client and the locking is used to prevent inconsistencies. The grain size of a lock is a role instead of a class which is commonly used as the locking granularity in the existing systems. The experimental result shows that our model reduces response time by 12${\sim}$18% and gives good scalability.
International Journal of Computer Science & Network Security
/
v.22
no.2
/
pp.232-240
/
2022
To fulfill user expectations, the rapid evolution of software techniques and approaches has necessitated reliable and flawless software operations. Aging prediction in the software under operation is becoming a basic and unavoidable requirement for ensuring the systems' availability, reliability, and operations. In this paper, an improved evolutionary computing-driven extreme learning scheme (ECD-ELM) has been suggested for object-oriented software aging prediction. To perform aging prediction, we employed a variety of metrics, including program size, McCube complexity metrics, Halstead metrics, runtime failure event metrics, and some unique aging-related metrics (ARM). In our suggested paradigm, extracting OOP software metrics is done after pre-processing, which includes outlier detection and normalization. This technique improved our proposed system's ability to deal with instances with unbalanced biases and metrics. Further, different dimensional reduction and feature selection algorithms such as principal component analysis (PCA), linear discriminant analysis (LDA), and T-Test analysis have been applied. We have suggested a single hidden layer multi-feed forward neural network (SL-MFNN) based ELM, where an adaptive genetic algorithm (AGA) has been applied to estimate the weight and bias parameters for ELM learning. Unlike the traditional neural networks model, the implementation of GA-based ELM with LDA feature selection has outperformed other aging prediction approaches in terms of prediction accuracy, precision, recall, and F-measure. The results affirm that the implementation of outlier detection, normalization of imbalanced metrics, LDA-based feature selection, and GA-based ELM can be the reliable solution for object-oriented software aging prediction.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.17
no.1
/
pp.261-279
/
2023
In this article, the uplink achievable rate is investigated for massive multiple-input multiple-output (MIMO) under correlated Ricean fading channel, where each base station (BS) and user are both deployed multiple antennas. Considering the availability of prior knowledge at BS, two different channel estimation approaches are adopted with and without prior knowledge. Based on these channel estimations, a two-layer decoding scheme is adopted with maximum ratio precoding as the first layer decoder and optimal second layer precoding in the second layer. Based on two aforementioned channel estimations and two-layer decoding scheme, the exact closed form expressions for uplink achievable rates are computed with and without prior knowledge, respectively. These derived expressions enable us to analyze the impacts of line-of-sight (LoS) component, two-layer decoding, data transmit power, pilot contamination, and spatially correlated Ricean fading. Then, numerical results illustrate that the system with spatially correlated Ricean fading channel is superior in terms of uplink achievable rate. Besides, it reveals that compared with the single-layer decoding, the two-layer decoding scheme can significantly improve the uplink achievable rate performance.
International Journal of Computer Science & Network Security
/
v.23
no.5
/
pp.163-171
/
2023
The intelligent transportation system has made a huge leap in the level of human services, which has had a positive impact on the quality of life of users. On the other hand, these services are becoming a new source of risk due to the use of data collected from vehicles, on which intelligent systems rely to create automatic contextual adaptation. Most of the popular privacy protection methods, such as Dummy and obfuscation, cannot be used with many services because of their impact on the accuracy of the service provided itself, they depend on changing the number of vehicles or their physical locations. This research presents a new approach based on the shuffling Nicknames of vehicles. It fully maintains the quality of the service and prevents tracking users permanently, penetrating their privacy, revealing their whereabouts, or discovering additional details about the nature of their behavior and movements. Our approach is based on creating a central Nicknames Pool in the cloud as well as distributed subpools in fog nodes to avoid intelligent delays and overloading of the central architecture. Finally, we will prove by simulation and discussion by examples the superiority of the proposed approach and its ability to adapt to new services and provide an effective level of protection. In the comparison, we will rely on the wellknown privacy criteria: Entropy, Ubiquity, and Performance.
Journal of the Korea Society of Computer and Information
/
v.14
no.10
/
pp.133-139
/
2009
A P2P technology in distributed computing fields is presented various methods to share resources between network connected peers. This is very efficient that a degree of resources to good use as compared with peers by using centralized network by a few servers. However peers to compose P2P system is not always online status, therefore it is difficult to support high reliability to user. In our previous work of this paper, it is contributing to reduce the loading rates to select of new resource support peer but a selection method the peers to share works to download resources is very simple that it is just selected about peer to have lowest job. In this paper, we reduced frequency offline peers by estimate based on a average value of success rates for peers.
Park, Jungwoo;Yang, Hong Ju;Moon, Seong Hyeok;Lee, Narahim;Kim, Jong-Hyun
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.601-604
/
2021
본 논문에서는 모바일 디바이스의 카메라로부터 얻은 RGB이미지를 분석하여 장애물을 안정적으로 탐지할 수 있는 프레임워크를 제안한다. 본 논문에서는 장애물을 안정적으로 찾기 위해 RANSAC(Random Sample Consensus)기반의 다중 평면 방식을 이용한 위험감지 시스템을 제안한다. 우리의 접근 방식은 RGB영상으로부터 특징점(Feature point)을 추출하고, 특징점을 분석(Feature point analysis)하여 영상내의 평면을 감지한다. 복잡한 지형으로 인해 생성되는 다수의 평면을 RANSAC을 통해 단일 평면으로 정규화하고, 이로부터 특징점을 분류하기 위한 기준점을 계산한다. 모바일 디바이스의 위치와 회전 제약 없이 효과적으로 기준평면(Reference plane)을 탐색할 수 있고, 영상 내 특징점을 실시간으로 계산한다. 다양한 실험을 통해 기준평면과 장애물과의 거리를 파악하여 장애물을 효과적으로 분류하는 결과를 얻었다. 우리의 기법은 실세계에서의 위험요소를 감지하고 모바일 디바이스 사용자의 안전성 확보에 활용할 수 있을 거라 기대한다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.530-532
/
2021
This paper deals with AI education service that enables developers who have completed basic programming education to program in C/C++ language in order to learn big data and artificial intelligence. In addition, a customized development environment configuration system according to the development environment and how the user implements and tests artificial intelligence are explained. And also it has a function to check the effect on artificial intelligence through manipulation of various internal parameters. It is expected that it will be possible to develop artificial intelligence education services without language restrictions through networks in the future.
Suyeon Park;Gayun Suh;HyeongHwan Shin;Junsu Cho;Jaejoon Jeong;Sei Kang;Bogyeong Seo;Minseo Lee;Seungwon Kim
Annual Conference of KIPS
/
2023.11a
/
pp.737-739
/
2023
몰입형 가상현실 시스템은 더 나은 3차원 시각정보를 제공할 수 있어, 의료계에서 해부학에 대한 이해를 높이는 데 사용되고 있다. 우리는 몰입형 가상현실에서 다중 사용자가 함께 MRI 영상으로부터 생성된 볼륨 렌더링 된 객체를 관찰하고 수술을 계획할 수 있는 시스템을 개발하여 소개하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.