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Abstract Sequential pattern mining is an important data mining problem with broad applications.
While the current methods are generating sequential patterns within a single attribute, the proposed
method is able to detect them among different attributes. By incorporating these additional attributes,
the sequential patterns found are richer and more informative to the user. This paper proposes a new
method for generating multi-dimensional sequential patterns with the use of Hellinger entropy
measure. Unlike the previously used methods, the proposed method can calculate the significance of
each sequential pattern. Two theorems are proposed to reduce the computational complexity of the
proposed system. The proposed method is tested on some synthesized purchase transaction databases.

Key words

1. Introduction

Data mining has been widely used to detect
important knowledge from a vast amount of data.
It can provide useful, interesting, and high quality
information to users. Among many techniques in
data mining, sequential pattern mining is a tech-
nique which can discover more meaningful
information by considering time attribute, together
with other traditional attributes. For example, from
a department store’s transaction database, we can
find the following sequential purchasing patterns:

“People who purchase a desktop PC later purchase
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a printer” and “Customers who buy a digital
camera typically buy camera batteries later.”
Sequential patterns can be widely used in many
different applications, such as predicting -certain
kind of disease from history of symptoms, and
predicting what product a customer will purchase
based on his/her transaction history. Therefore,
been intensively

sequential pattern mining has

studied during recent years, and there exist a
number of algorithms for sequential pattern mining.

Almost all of the current methods for mining
sequential patterns are based on the Apriori
algorithm [1]. After that, a series of Apriori-like
algorithms have been proposed: GSP (1], PSP [2],
SPIRIT (3], FreeSpan [4], [5], and
SPADE (6.

However, one of the limitations of the current

PrefixSpan
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sequential pattern algorithms is that they mine only
one dimension. They only consider one attribute,
and thus can not detect sequential patterns hiding
across different attributes.

1.1 Multi-dimension vs. Single-dimension

In real applications, sequence patterns are usually
associated with different circumstances, and such
circumstances form a multiple dimensional space.
Time-related databases might contain many other
customer-related, product-related, and/or transaction—
related attributes. For example when mining for
purchase sequential patterns from a transaction
database, the single dimensional mining methods
only look at the items purchased.

On the other hand, multi-dimensional sequential
pattern mining attempts to find sequential patterns
across several dimensions of attribute. By incor-
porating the additional attributes, the sequential
patterns found are richer and more informative to
the user. For example, customer purchase sequ-
ences are associated with price, time, occupation,
and others. Clearly, it is more interesting and
useful to mine sequential patterns associated with
multi-dimensional information. In multi-dimensional
sequential pattern mining, many different attributes
related to the transaction data were introduced and
formed a multi-dimensional sequential datasets. The
aim of this multi-dimensional sequential pattern
mining is to get more interesting sequential
patterns with different dimensional attributes.

In this paper, we propose the theme of multi-
dimensional sequential pattern mining and thorou-
ghly explore efficient methods for multi-dimensional
sequential pattern mining with the use of Hellinger
entropy measure. In addition, our method could
calculate the significance of each sequential pattern
as a numeric value, and these sequential patterns
are given in a sorted order based on this numeric
measure.

1.2 Related Work

The sequential pattern mining problem was first
introduced by Agrawal and Srikant in [1). Given a
set of sequences, where each sequence consists of
a list of elements and each element consists of a
set of items, and given a user-specified minimum
support threshold, sequential pattern mining is to

find all of the frequent subsequences, ie., the
subsequences whose occurrence frequency in the
set of sequences is no less than minimum support.
Most of the basic and earlier algorithms for
sequential pattern mining are based on the Apriori
algorithm proposed in association rule mining.

Since then, many studies have contributed to the
efficient mining of sequential patterns or other
frequent patterns in time-related data. GSP [1]
starts by finding the frequent l-item patterns, and
then these become the basis for generating all the
potential candidate sets, and counts their support.
The 2-item patterns with large support value are
retained and become the seed set for the next pass.
The algorithm continues to make multiple passes
over the data until no more candidates can be
generated or sequential patterns found.

PSP [2] was developed to improve the way in
which GSP stored candidate patterns. PSP creates
a prefix-tree, where any branch from its root to
the leaf, stands for a candidate sequence, and the
terminal node provides the support of the sequence.

SPIRIT [3] proposes the use of Regular Expre-
ssions (RE) as a flexible constraint specification
tool that to be
incorporated pattern mining

enables user—controlled focus
into the sequential
process. While conventional mining systems provide
users with only a very restricted mechanism for
specifying patterns of interest, they develop a
family of algorithms for mining frequent sequential
patterns that also satisfy user-specified RE
constraints.

However, the major limitation of the current
sequential pattern algorithms is that they mine only
one dimension. Usually, sequence patterns are
associated with different attribute circumstances,
and such circumstances form a multiple dimensional
space.

In the data mining literature, not many study is
known about multi-dimensional sequential pattern
mining. One of them is UNISEQ method [7], and,
in UNISEQ, the multi-dimensional attributes are
embedded in the sequential database by adding a
new element in the sequence database. With the
newly formed sequential database, PrefixSpan [5] is

employed in this method. However, this type of
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multi-dimensional association pattern mining me-
thods are fairly straightforward extensions from
single-dimensional mining, and little research has
been directed towards developing alternative methods.
In this paper, we propose a new paradigm for
generating multi~dimensional sequential patterns.
information theoretic approach for

with

An efficient
multi-dimensional sequential pattern mining,
the use of Hellinger entropy measure, is proposed.
Our proposed method could calculate the signi-
ficance of each sequential pattern as a numeric
value, and these sequential patterns are given in a
sorted order.

2. Information Content of Sequential Patterns

Sequential pattern generation can be viewed as a
search for hypotheses to account for a set of
time-related instances or examples which are often
assumed to be restricted to some instance space.
For the purpose of this paper, the hypothesis space
be restricted to the

the
defined by the Cartesian product of the sample

of sequential pattern will

conjunctive propositions in discrete space
spaces of the individual attributes-the extension to
more general hypothesis spaces remains a topic for
further investigation.

The format of sequential patterns which we will
handle in this paper is as follows:

A=a N B=b A .. —» T=t

where A, B and T are attributes with a, b and t
being values in their respective discrete alphabets.
We restrict the right-hand expression to being a
the

left-hand side may be a conjunction of such

single value assignment expression while
expressions. The semantics of above format is that
if a person does an action (e.g., purchase) based on
the condition (left-hand side) of above pattern at a
given time, then he will later do an action
described in right-hand side with high possibility.
Since our sequential pattern method handles
multi-dimensional databases, the format of database
is different from the format used by traditional
sequential pattern methods. FEach transaction of
database is associated with different circumstances
for multi-dimensional

sequential patterns mining,

including the circumstances (attributes) of customer,

tio
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item, and transaction, and such circumstances form
a multiple dimensional space. The entire database is
sorted based on customer-id and transaction-time.
The basic idea of sequential pattern generation
starts with the that the
assignments in the left hand side of each sequential
pattern affects the probability distribution of the
right-hand side (target attribute). The target attri-
bute forms its a priori probabilities without pre-

assumption value

sence of any left-hand conditions. It normally
represents the class frequencies of the target
probability  distribution

measured under

However, its

it

attribute.

changes when is certain
conditions usually given as value assignments of
other attributes. Intuitively speaking, if a certain
value assignment has significantly changed the
probability distribution of the target, it is clear that
the given value assignment plays an important role
in determining the class values of the target
attribute. On the other hand, if the probability
distribution of the target attribute remains the same
regardless of a value assignment of other attribute,
those two attributes are regarded as independent of
each other. Therefore, in this paper, the significance
of a sequential pattern is interpreted as the degree
of

distribution and a posteriori probability distribution

dissimilarity between a priori probability
of the target attribute.

In this paper, this dissimilarity is defined as
instantaneous information, which is the information
content of the sequential pattern given that the
left-hand side happens. The critical part now is
how to define or select a proper measure which
can correctly measure the instantaneous infor-
mation.

C4.5, which generates decision trees from data,
has been widely used for classification in Quinlan
[8]. C4.5 uses the following formula as a measure
of information for attribute A.

HT) - HTNA=a)=
(1)

1 1
Zp(t) log(w) - ZP(M) log(m)

where T and t represent the target attribute and its
corresponding value, respectively. It calculates the
the
distribution and that of a posteriori distribution.

difference  between entropy of a priori
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that there is a
fundamental problem with this measures. Consider

However, it is well-known
the case of an n-valued variable where a particular
value of T=t is one, while all the other values in
T’s alphabet are zero. In this case, a conditional
permutation of these probabilities would be signi-
ficant, i.e., a rule which predicts the relatively rare
event T=t. However, the formula (1), because it
cannot distinguish between particular events, would
yield zero information for such events.

In this paper a new information measure, called
Hellinger measure, is used to define the information
content of sequential pattern rules. The Hellinger
divergence was originally introduced by Beran [91,
and is defined as

SlroORrarE @

¢t; denotes the value of attribute 7. It

where

becomes zero if and only if both a priori and a
posteriori distributions are identical, and ranges
from 0 to 1. Unlike other information measures,
this measure is applicable to every possible case of
probability distributions. In other words, the Hel-
linger measure is continuous on every possible
combination of a priori and a posteriori values. It
can be interpreted as a distance measure where
distance corresponds to the amount of divergence
distribution.

we employ Hellinger measure as a

between a priori and a posteriori
Therefore,
measure of divergence, which will be used as the

information amount of sequential patterns.

3. Properties of H Measure

In terms of the sequential pattern rules, let us
interpret the event A=a as the target concept to be
learned and the event(possibly conjunctive) B=b as
the hypothesis describing this concept. The
information content of the sequential pattern rule is
defined as

WH@H —VEa 1+ VI-Pdb —VI-Hal* 3)
where P(alb) means the conditional probability of
A=a under the B=b has
beforehand. Notice that Equation (3) has a different

form of definition from that of Equation (2). In

condition happened

sequential pattern generation, one particular value
of class attribute appears in the right hand side of

a9
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the pattern, and thus the probabilities for all other
values are included in I-Pla). In addition, we
squared the original form of Hellinger measure
because (1) by squaring the original form of
Hellinger measure, we could derive a boundary of
the Hellinger measure, which allows us to reduce

drastically the search space of possible sequential

- pattern rules, (2) the relative accuracy of each

pattern is not affected by the modified Hellinger
measure, and (3) the weights between two terms of
Hellinger ~measure provides more reasonable
trade-off This

measure can be interpreted as the cross entropy of

in terms of their value range.

A with the variable "A conditioned on the event
B=b.” Cross entropy is well-known as an accuracy
measure between two distributions and we address
this measure as accuracy of patterns.

In addition, we need a preprocessing step when
calculating the posterior probabilities(P(alb)) in
Equation (3).
LSV 2 T,

Suppose a certain customer has

¢, transactions sorted on transaction time,

and, among them, p transactions satisfy the
left-hand side conditions of the given sequential

pattern rule. For a certain transaction ¢, we define
§; as the number of transactions following t;

within the given customer. Then, the posterior
probability (P(alb)) is defined as

b+ : 8
Plab)y=—=1. (4)
n+ - 8 i
As an illustrative example, assume we have a

sample database in Figure 1, and consider a
sequential pattern we are going to consider is
given as Customer=Cl N\ Item=Pl — Item=P2 .
In this database, Customer Cl1 has 7 transactions
and three of them (transaction (1), (3), and (7))
satisfy the condition part of the above sequential
pattern. The  posterior probability(P(alb)) s
calculated as

 34(64440) _ 13
Pdb) =g 54 +0) ~ 17 ®

Another criteria we have to consider is the
generality of the sequential patterns. The basic idea
behind generality is that the more often left-hand
side occurs for a sequential pattern, the more
useful the pattern becomes. The left-hand side
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must occur relatively often for a pattern to be
deemed useful. In this paper, we use vV P(&) to
represent the probability that the sequential pattern
will occur and, as such, can be interpreted as the

measure of sequential pattern generality.

Table 1 Preprocessing Example

| ID Customer Time Item
(1) Cl1 DI Pl
(2) C1 D1 P4
(3) Cl D2 P1
(4) C1 D2 P2
5) C1 D2 P3
6) C1 D3 P2
(7) C1 D3 Pl
(8) C2 D2 P2

Preprocessing step is also needed to calculate the
generality of sequential patterns. Suppose the total
number of transaction (of entire customers) is N,
and there are p transactions satisfying the condition
part of the given sequential pattern. We define, for
a certain transaction ¢, J4; as the number of
transactions following t; within the given customer.

Then, the generality(P(b)) of the given sequential

iy LA
N+ gd,-

By multiplying the generality with the accuracy

pattern is defined as

of the sequential pattern rules, we have the

following term

VPO [V Hdb)—V ) '+ (V1-Kdb) ~VI- Ka) )
(7

which possesses a direct interpretation as a multi-

plicative measure of the generality and accuracy of
a given sequential pattern rule. In this paper, we
call the above multiplicative term H measure of
sequential patterns.

3.1 Boundaries of H Measure

The algorithm starts with generating an initial
set of sequential patterns, followed by specialization
of these sequential patterns to optimize the pattern
set. The characteristic of the specialization behavior

is critical to the performance of the algorithm.
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Therefore, in this section, we are going to derive

some quantitative bounds on the nature of
specialization, which can be used to improve
computational performance. Specialization is the

process by which we try to increase a sequential
pattern’s accuracy by adding an extra condition to
left-hand side. The

necessary decrease in generality of the sequential

the pattern’s consequent
pattern should be less than an increase in the
accuracy to the extent that the overall H measure
is increased.

We will

measure as the definition of sequential

examine specialization, using the H
pattern
goodness, with V(a) corresponding to generality
and Equation (3) corresponding to accuracy. The
question we pose is as follows: given a particular
general sequential pattern, what quantitative
statements can we make about specializing this
sequential pattern ? In particular, if we define H,
and H, as the /1 measures of the specialized and

general sequential patterns, respectively, is it

possible to find a bound of H, in terms of H, ?
Suppose we have a sequential pattern
B=b -» A=a. 8
We would like to specialize this sequential pattern
by adding a condition C=c¢ so that we have a
specialized sequential pattern
B=b AC=c -> A=a. (9)
For the sake of illustration, sequential patterns in
formulas (8) and (9) are denoted as R, and R,
In this

sequential pattern which contains only one condition

respectively. section, we deal with a
and try to specialize it. More general cases which
have more than one condition in the left hand side

can be easily understood. Suppose H, and H, are
the I measures of the sequential patterns R, and
R, respectively. Our goal is to answer the
question "Can we describe the bound of H; in
terms of H, ?” In other words, is it possible to
estimate the maximum value of H, without
knowing any information about attribute C? The
motivation for bounding H, in this manner is
two-folds.

Firstly, it produces some theoretical

insight into specialization, while secondly, the bound
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can be used by the sequential pattern algorithm to
search the search space (hypothesis space) effi-
ciently.

Consider that we are given a general sequential

pattern whose H measure, H,, is defined as
H,=VAB(VPdB —VED ]+ [VI-Pah —V1-Pa]?)

=V P(B[2—2V P(dB)(a) — 2V (1— P(dd))1— Ha)]
10)

We try to calculate the bound of
H,=VP(b)[2 -2V Kdb)P(a) — 2V (1— Adbc))(1— A(a) ]
=V P(doV B[22V Pldbo)P(@) — 2V (1 — P(dbc))(1— Pa)) ]

(11)

Given no information about C, we can state the

following results.
Theorem 1: If the H measure of a specialized

pattern satisfies the following boundary:
H < max {V P(db)V P(B)[ 2V m— 2V P(a)]

W HB)—V1-Hdb)V P2V K(a)+2V 1— K]}

where m represents the number of class in the

target attribute, the general pattern discontinues
specializing.

Proof: For given H, and H, defined in Equa-
tion (10) and (11), respectively. We know that

Pab) = P(abc) + P(ab™ &) = P(albc) P(bc) + Plab™ ) P(b'¢)
(12)
Dividing Equation (12) by P(b), we have
P(d)b) = P(dbc)P(db) + Plab™ ) (T db)
= P(adbc)(db) + P(ab™c)(1— P(db)
Therefore,
P =-Fal=Rabla. (13)

Let w denote P(abc).
i) if @ < P(alb) and w < P(albc), both numerator

and denominator of P(c|b) are positive, and thus

_ _Pdb _
max , P(db) = A dbo) when w=0.

H.< | RAD B 22 FdboR@)

—2vV (1— P(dbo))(1— P(a))]

- VBT VH Ibc

—WRaD-2 %glj;—clu—m»]

<V P(dB)Y P(_b)[-m-zm—%/ o)l .

Without loss of generality, we can assume that
1/m< Pdbc) <1 since the highest frequency among

LZEYO

8 A 329 A 2 22062

the values of the target attribute is to be included
in the right hand side of the pattern. Therefore,
H <V P(db) P(B) [2V m—2V Ka)).
ii) if > Plalb) and o> P(albc), both numerator
and denominator of P(clb) are negative, and
thus

_ _1—P(db) _
max , P(db) = 1= P4 b0) when w=1.

H.< %ﬁ%\/—ﬂb)[z—Z HdboP(@)

—2v (1~ Aabc) (1~ Ka))l
’ P(dbd) [P(B) —
P(Tbc)
\/—I—P(a_lb_)\/P(b_)[Z\ll—P%(J—“%P(a)—i—N_l— 2

<o P(B)—V1—P(dblV P(B)[2V P(a)+2V 1~ A(a)]
iii) otherwise, the probability of P(clb) in Equation

(13), becomes less than zero, which is impos-

sible to occur.
Therefore, from i), ii), and iii),
Theorem 1. Q.E.D.

As a special case of Theorem 1, if the success

we can prove

rate (conditional probability) of general pattern

becomes 1, the H measure of the specialized
pattern is always less than or equal to that of
general pattern.

If the conditional probability

(Plalb)) of general pattern is 1, H measure of

Theorem 2

specialized pattern cannot be greater than that of
general pattern. Therefore, the general pattern

discontinues specializing.

Proof: From P(6) = P(ab)+ P("ab) and Paiy=-E5E =1,
(" ab) = P(b)—P(ab) =0,
Therefore,

__Plabo) _____ Pabg)
Pldbe) = P(abcg = P(abc)-fflP%_'lle) )

(14)
_ P(abo) -1
P(abc) + P(d " ab)P("ab)
From Equation (10) and Plalb) = 1,

H =VP(b)2-2V P(a)).
From Equation (11) and (14), H,=V P(bc}(2—2V P(a)).
Since P(bc)<Hb), H<H,. QED.

As a consequence of these theorems, we note
that since the bound of specialized sequential
pattern is achievable without further information
about C, we can decide in advance that the

specialized sequential pattern cannot be improved



G878 gAY A& A4 93 5 nloly FuAZF 81

with respect to FH measure. The logical
consequence of this statement is that it precludes
using the bound to discontinue specializing based

on the value of H, alone. Conversely, if p(alb) is

not equal to 1, then with no information at all
available about the other variables, there may
always exist a more specialized sequential pattern
whose information content is strictly greater than
that of the general sequential pattern. However, as
we shall see, we could certainly compare the bound
with any sequential patterns we might already
have. In particular, if the bound is less than the
information content of the worst sequential pattern
(H., described

in the following section), then

specialization cannot possibly find any better
sequential pattern. This principle will be the basis

for restricting the search space of the system.

4. Sequential Pattern Generation

We will now define the algorithm and discuss its
The algorithm takes
database in the form of discrete attribute vectors

basic ideas. time-related
and generates a set of K sequential patterns, where
K is
generated

a user-defined parameter. The set of
sequential patterns are the K most
informative sequential patterns from the database
as defined by the H measure. The algorithm
proceeds by first finding K sequential patterns,
calculating their J{ measures, and then placing
these K sequential patterns in an ordered list. The
smallest H measure, that of the Kth element of the
list, is then defined as the running minimum H..

The critical part of the

specialization criterion

algorithm is the
since it determines how
much of the hypothesis space actually needs to be

explored by the algorithm. The algorithm employs

branch-and-bound with depth-first search over
left-hand starting  with  the
first-order conditions(single value assignment in
left-hand side).
patterns which are candidates for inclusion in the
their
compared with H, If they are greater than H.,

possible sides,

From that point onwards, new

sequential pattern set have H measure

they are inserted in the list and the Kth sequential
pattern is deleted. And H. is updated with the

value of the H measure of whatever sequential
pattern is now Kth on the list. The algorithm
systematically tries to specialize all first-order
sequential patterns and terminates when it has
determined that no more sequential patterns exist
which can be specialized to achieve a higher H
measure than H. The decision whether to continue
specializing or to back-up on the depth-first search
is determined by the algorithm in Figure 2. The H
pattern can be

measure of each sequential

considered as the significance of the patterns.

5. Experimental Results

In order to test the functionality of the algorithm
proposed in this paper, we assumed an artificial
time-related database described in Table 2, and
synthesized two sets of artificial datasets. The
database in Table 2 contains 14 attributes. The
databases  for  traditional

sequential  pattern

algorithms (Apriori-like algorithms) contain the
following three (or more) attributes: customer-id,
transaction-time, (multiple) items. However, since
our method is generating multi-dimensional
sequential patterns, the database may contain many
attributes in various categories. The attributes in
the database can be grouped into the following four

categories: 1) basic, 2) customer-related, 3) item-

If success rate of H,=1
Then

Else
Let

cease to specialize; /* by Theorem 2 */

End-if

2V P(8)—V' 1 — P(adb)V P(b)y [ 2V P(a)+ 2V 1— P(a)]
If H,<H., Then cease to specialize; /* by Theorem 1 */

Figure 1 Algorithm for specialization
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related, 4) transaction-related.

The proposed algorithm was tested on two
synthetic datasets. Each database contains 20,000
records, and data values are generated using
random numbers. For each data set, the entire data
and then 100 most

sequential patterns were generated.

set is read informative

The topmost 15 sequential patterns from the first
dataset is shown in Table 3. For each pattern in
Table 3, its corresponding values for confidence,
and the

resulting patterns are sorted based on their H

generality, and H measure are shown,

measure values. The confidence means the number
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right-hand side of the pattern divided by the
number of transactions satisfying left-hand side
only.

The topmost pattern in Table 3 means that

customers who purchased items (whatever the
items are) of which price are between 20-29 later
purchase item P07. This type of patterns can not
be acquired from traditional sequential pattern
methods. The pattern 4 shows a sequential pattern
equivalent to the one generated from Apriori-like
method. It illustrates that the functionality of our
method that of traditional

pattern methods. In pattern 2, it shows that if male

includes sequential

of transactions satisfying both left-hand side and customers purchase item P06 then they later
Table 2 Sample Database
Attribute Category Attribute name Corresponding Values
. (1) Customer-ID C00, C02, ... C20
Basic = ;
attributes (2) Time continuous
(3) Item P00, P02, ... P10
(4) Gender male, female
Customer (5) Age less than 20, 20 29, 30-39, 40-49, over 50
related (6) Married single, married, others
attributes (7) Region city, non-city
(8) Occupation sales, engineer, teacher, others
Item (9) Unit price less than $20, $20-$29, $30-$39, $40-$49, over $50
related (10) SaleOrNot sale, nonsale
attributes (11) Color blue, red, white, others
Transaction (12) Qty 1, 2-3, over 4
related (13) DayofWeek Su, Mo., Tu, We,, Th, Fr., Sa.
attributes (14) Payment cash, credit-card, others
Table 3 Sequential patterns using dataset I
No. Sequential Patterns Confidence Generality H
1 Price=20-29 — Item=P07 0.13137 0.00380 0.00023
2 Gender=male & Item=P06 — Item=P02 0.11015 0.00536 0.00021
3 Qty=1 — Item=P09 0.11800 0.00203 0.00021
4 Item=P03 — Item=P01 0.11067 0.00353 0.00019
5 SaleorNot=sale — Item=P00 0.11207 0.00477 0.00017
6 Age=20-29 & Qty=over 5 — Item=P03 0.10592 0.00621 0.00015
7 Price=30-39 & Qty=1 — Item=P02 0.10559 0.00649 0.00015
8 Gender=male — Item=P07 0.12526 0.00585 0.00014
9 Week=Su. — Item=P07 0.10678 0.00709 0.00012
10 Item=6 — Item=P05 0.12689 0.00364 0.00012
11 Occupation=sales — Item=P02 0.10658 0.00654 0.00012
12 Region=city & Item=P09 — Item=P01 0.12378 0.00607 0.00011
13 Price=20 29 — Item=P08 0.12515 0.00455 0.00011
14 Week=We. — Item=P05 0.10757 0.00770 0.00011
15 Gender=male & Payment=cash — Item=P03 0.106599 0.00347 0.00011
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purchase item P02. This pattern shows how our
item attributes with
thus
multi- dimensional pattern. Using the first dataset,

method could combine the

other customer -related attributes, forming
we could demonstrate how the proposed sequential

algorithm could detect and represent multi-
dimensional sequential patterns.

The second dataset also contains 20,000 records,
and data values are generated using random num-
bers. However, in the second dataset, we assumed
that there are a number of sequential patterns
hidden

generated based on those sequential patterns. The

in the real world, and the dataset is

sequential patterns we have assumed are as
follows.

» Color=white & Qty-1 > Item-P05

* Region=city & Item-10 19 > Item-P08

The goal of this experiment is to verify whether
the proposed algorithm is able to detect these
sequential patterns hidden in the dataset. For the
second experiment, the entire data set is read and
then 100 most informative sequential patterns were
generated. The topmost 15 sequential patterns from
the second dataset is shown in Table 4.

The sequential patterns we have assumed are
generated from the system and shown in Table 4
as pattern 2 and pattern 5, respectively. We could
also see many other multi-dimensional sequential

patterns in Table 4. This experiment illustrates that
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our proposed algorithm is able to effectively detect
the sequential patterns hidden within the dataset.

6. Conclusion

In this paper we have introduced a new method
for generating multi-dimensional sequential patterns
from time series databases. We developed an
information theoretic measure, called / measure,
which becomes the criteria for selecting and sorting
inductive sequential patterns generated. The boun-
dary of the F measure is analyzed and two
theorems are developed to reduce the computational
complexity of the system. In addition, missing
values can be handled by considering them as
separate categories. The algorithm is applied to two
synthetic databases. The resulting sequential pat-
terns generated from the data sets show how the
the hidden

patterns of data sets effectively.

system  detects multi -dimensional
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