• Title/Summary/Keyword: multi objective genetic algorithm

Search Result 315, Processing Time 0.029 seconds

A Genetic Algorithm for a Multiple Objective Sequencing Problem in Mixed Model Assembly Lines (혼합모델 조립라인의 다목적 투입순서 문제를 위한 유전알고리즘)

  • Hyun, Chul-Ju;Kim, Yeo-Keun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.22 no.4
    • /
    • pp.533-549
    • /
    • 1996
  • This paper is concerned with a sequencing problem in mixed model assembly lines, which is important to efficient utilization of the lines. In the problem, we deal with the two objectives of minimizing the risk of stoppage and leveling part usage, and consider sequence-dependent setup time. In this paper, we present a genetic algorithm(GA) suitable for the multi-objective optimization problem. The aim of multi-objective optimization problems is to find all possible non-dominated solutions. The proposed algorithm is compared with existing multi-objective GAs such as vector evaluated GA, Pareto GA, and niched Pareto GA. The results show that our algorithm outperforms the compared algorithms in finding good solutions and diverse non-dominated solutions.

  • PDF

Static Compliance Analysis & Multi-Objective Optimization of Machine Tool Structures Using Genetic Algorithm(I) (유전자 알고리듬을 이용한 공자기계구조물의 정강성 해석 및 다목적 함수 최적화(I))

  • 이영우;성활경
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.443-448
    • /
    • 2000
  • In this paper, multiphase optimization of machine structure is presented. The goal of first step is to obtain (i) light weight, (ii) rigidity statically. In this step, multiple optimization problem with two objective functions is treated using Pareto Genetic Algorithm. Where two objective functions are weight of the structure, and static compliance. The method is applied to a new machine structure design.

  • PDF

Task Scheduling and Resource Management Strategy for Edge Cloud Computing Using Improved Genetic Algorithm

  • Xiuye Yin;Liyong Chen
    • Journal of Information Processing Systems
    • /
    • v.19 no.4
    • /
    • pp.450-464
    • /
    • 2023
  • To address the problems of large system overhead and low timeliness when dealing with task scheduling in mobile edge cloud computing, a task scheduling and resource management strategy for edge cloud computing based on an improved genetic algorithm was proposed. First, a user task scheduling system model based on edge cloud computing was constructed using the Shannon theorem, including calculation, communication, and network models. In addition, a multi-objective optimization model, including delay and energy consumption, was constructed to minimize the sum of two weights. Finally, the selection, crossover, and mutation operations of the genetic algorithm were improved using the best reservation selection algorithm and normal distribution crossover operator. Furthermore, an improved legacy algorithm was selected to deal with the multi-objective problem and acquire the optimal solution, that is, the best computing task scheduling scheme. The experimental analysis of the proposed strategy based on the MATLAB simulation platform shows that its energy loss does not exceed 50 J, and the time delay is 23.2 ms, which are better than those of other comparison strategies.

Search for Phosphors for Use in Displays and Lightings using Heuristics-based Combinatorial Materials Science

  • Sharma, Asish Kumar;Sohn, Kee-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.207-210
    • /
    • 2009
  • According to the recent demand for materials for use in various displays and solid state lightings, new phosphors with improved performance have been pursued consistently. Multi objective genetic algorithm assisted combinatorial material search (MOGACMS) strategies have been applied to various multi-compositional inorganic systems to search for new phosphors and to optimize the properties of phosphors.

  • PDF

Aerodynamic Optimization of 3 Dimensional Wing-In-Ground Airfoils Using Multi-Objective Genetic Algorithm (지면효과를 받는 3 차원 WIG 선의 익형 형상 최적화)

  • Lee, Ju-Hee;You, Keun-Yeal;Park, Kyoung-Woo
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3080-3085
    • /
    • 2007
  • Shape optimization of the 3-dimensional WIG airfoil with 3.0-aspect ratio has been performed by using the multi-objective genetic algorithm. The WIG ship effectively floating above the surface by the ram effect and the virtual additional aspect ratio by a ground is one of next-generation and cost-effective transportations. Unlike the airplane flying out of the ground effect, a WIG ship has possibility to capsize because of unsatisfying the static stability. The WIG ship should satisfy aerodynamic properties as well as a static stability. They tend to strong contradict and it is difficult to satisfy aerodynamic properties and static stability simultaneously. It is inevitable that lift force has to scarify to obtain a static stability. Multi-objective optimization technique that the individual objectives are considered separately instead of weighting can overcome the conflict. Due to handling individual objectives, the optimum cannot be unique but a set of nondominated potential solutions: pareto optimum. There are three objectives; lift coefficient, lift-to-drag ratio and static stability. After a few evolutions, the non-dominated pareto individuals can be obtained. Pareto sets are all the set of possible and excellent solution across the design space. At any selections of the pareto set, these are no better solutions in all design space

  • PDF

Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm

  • Kaveh, A.;Kalateh-Ahani, M.;Fahimi-Farzam, M.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.227-245
    • /
    • 2013
  • The term "constructability" in regard to cast-in-place concrete construction refers mainly to the ease of reinforcing steel placement. Bar congestion complicates steel placement, hinders concrete placement and as a result leads to improper consolidation of concrete around bars affecting the integrity of the structure. In this paper, a multi-objective approach, based on the non-dominated sorting genetic algorithm (NSGA-II) is developed for optimal design of reinforced concrete cantilever retaining walls, considering minimization of the economic cost and reinforcing bar congestion as the objective functions. The structural model to be optimized involves 35 design variables, which define the geometry, the type of concrete grades, and the reinforcement used. The seismic response of the retaining walls is investigated using the well-known Mononobe-Okabe analysis method to define the dynamic lateral earth pressure. The results obtained from numerical application of the proposed framework demonstrate its capabilities in solving the present multi-objective optimization problem.

Multi-Item Inventory Problems Revisited Using Genetic Algorithm

  • Das, Prasun
    • Management Science and Financial Engineering
    • /
    • v.13 no.2
    • /
    • pp.29-46
    • /
    • 2007
  • This paper makes an attempt to compare the two important methods for finding solutions of multi-item inventory problem with more than one conflicting objectives. Panda et al.[9] discusses a distance-based method to find the best possible compromise solution with variation of priority under the given weight structure. In this paper, the problem in [9] is revisited through the Pareto-optimal front of genetic algorithm with the help of a situation of retail stocking of FMCG business. The advantages of using the solutions from the perspective of the decision maker obtained through multi-objective optimization are highlighted in terms of population search, weighted goals and priority structure, cost, set of compromise solutions along with prevention of stock-out situation.

A New Approach to Multi-objective Error Correcting Code Design Method (다목적 Error Correcting Code의 새로운 설계방법)

  • Lee, Hee-Sung;Kim, Eun-Tai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.5
    • /
    • pp.611-616
    • /
    • 2008
  • Error correcting codes (ECCs) are commonly used to protect against the soft errors. Single error correcting and double error detecting (SEC-DED) codes are generally used for this purpose. The proposed approach in this paper selectively reduced power consumption, delay, and area in single-error correcting, double error-detecting checker circuits that perform memory error correction. The multi-objective genetic algorithm is employed to solve the non -linear optimization problem. The proposed method allows that user can choose one of different non-dominated solutions depending on which consideration is important among them. Because we use multi-objective genetic algorithm, we can find various dominated solutions. Therefore, we can choose the ECC according to the important factor of the power, delay and area. The method is applied to odd-column weight Hsiao code which is well- known ECC code and experiments were performed to show the performance of the proposed method.

A Study on the Optimal Preform Shape Design using FEM and Genetic Algorithm in Hot Forging (열간단조에서 유한요소법과 유전 알고리즘을 이용한 예비성형체의 최적형상 설계 연구)

  • Yeom, Sung-Ho;Lee, Jeong-Ho;Woo, Ho-Kil
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.29-35
    • /
    • 2007
  • The main objective of this paper is to propose the optimal design method of forging process using genetic algorithm. Design optimization of forging process was doing about one stage and multi stage. The objective function is considered the filling of die. The chosen design variables are die geometry in multi stage and initial billet shape in one stage. We performed FE analysis to simulated forging process. The optimized preform and initial billet shape was obtained by genetic algorithm and FE analysis. To show the efficiency of GA method in forging problem are solved and compared with published results.

Optimal Design of Outrigger Damper using Multi-objective Genetic Algorithm (다목적 유전자 알고리즘을 이용한 아웃리거 댐퍼의 최적설계)

  • Kim, Hyun-Su;Yoon, Sung-Wook;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.4
    • /
    • pp.97-104
    • /
    • 2014
  • Recently, a concept of damped outrigger system has been proposed for tall buildings. Structural characteristics and design method of this system were not sufficiently investigated to date. In this study, control performance of damped outrigger system for building structures subjected to seismic excitations has been investigated. And optimal design method of damped outrigger system has been proposed using multi-objective genetic algorithm. To this end, a simplified numerical model of damped outrigger system has been developed. State-space equation formulation proposed in previous research was used to make a numerical model. Multi-objective genetic algorithms has been employed for optimal design of the stiffness and damping parameters of the outrigger damper. Based on numerical analyses, it has been shown that the damped outrigger system control dynamic responses of the tall buildings subjected to earthquake excitations in comparison with a traditional outrigger system.