• Title/Summary/Keyword: multi objective genetic algorithm

Search Result 315, Processing Time 0.027 seconds

Weighted sum multi-objective optimization of skew composite laminates

  • Kalita, Kanak;Ragavendran, Uvaraja;Ramachandran, Manickam;Bhoi, Akash Kumar
    • Structural Engineering and Mechanics
    • /
    • v.69 no.1
    • /
    • pp.21-31
    • /
    • 2019
  • Optimizing composite structures to exploit their maximum potential is a realistic application with promising returns. In this research, simultaneous maximization of the fundamental frequency and frequency separation between the first two modes by optimizing the fiber angles is considered. A high-fidelity design optimization methodology is developed by combining the high-accuracy of finite element method with iterative improvement capability of metaheuristic algorithms. Three powerful nature-inspired optimization algorithms viz. a genetic algorithm (GA), a particle swarm optimization (PSO) variant and a cuckoo search (CS) variant are used. Advanced memetic features are incorporated in the PSO and CS to form their respective variants-RPSOLC (repulsive particle swarm optimization with local search and chaotic perturbation) and CHP (co-evolutionary host-parasite). A comprehensive set of benchmark solutions on several new problems are reported. Statistical tests and comprehensive assessment of the predicted results show CHP comprehensively outperforms RPSOLC and GA, while RPSOLC has a little superiority over GA. Extensive simulations show that the on repeated trials of the same experiment, CHP has very low variability. About 50% fewer variations are seen in RPSOLC as compared to GA on repeated trials.

Investigation of expanding-folding absorbers with functionally graded thickness under axial loading and optimization of crushing parameters

  • Chunwei, Zhang;Limeng, Zhu;Farayi, Musharavati;Afrasyab, Khan;Tamer A., Sebaey
    • Steel and Composite Structures
    • /
    • v.45 no.6
    • /
    • pp.775-796
    • /
    • 2022
  • In this study, a new type of energy absorbers with a functionally graded thickness is investigated, these type of absorbers absorb energy through expanding-folding processes. The expanding-folding absorbers are composed of two sections: a thin-walled aluminum matrix and a thin-walled steel mandrel. Previous studies have shown higher efficiency of the mentioned absorbers compared to the conventional ones. In this study, the effect of thickness which has been functionally-graded on the aluminum matrix (in which expansion occurs) was investigated. To this end, initial functions were considered for the matrix thickness, which was ascending/descending along the axis. The study was done experimentally and numerically. Comparing the experimental data with the numerical results showed high consistency between the numerical and experimental results. In the final section of this study, the best energy absorber functionally graded thickness was introduced by optimization using a third-order genetic algorithm. The optimization results showed that by choosing a minimum thickness of 1.6 mm and the exponential coefficient of 3.25, the most optimal condition can be obtained for descending thickness absorbers.

COST BENEFIT ANALYSIS OF HIGHWAY SYSTEMS

  • Darren Thompson;Don Chen;Nick Walker;Neil Mastin
    • International conference on construction engineering and project management
    • /
    • 2013.01a
    • /
    • pp.494-496
    • /
    • 2013
  • Cost-Benefit Analysis (CBA) is a systematic optimization process that allows users to compare different alternatives and to determine if a project is a solid investment. Many state DOTs have included CBA in their pavement management systems (PMSs) to help allocate state funds for maintenance, rehabilitation, resurfacing, and reconstruction of pavements. In a typical CBA, each pavement type has an assigned weight factor which represents the level of importance of this pavement type. To conduct an accurate CBA, it is essential to select appropriate weight factors. Arbitrarily assigning weights factors to pavements can lead to biased and inaccurate funding allocation decisions. The purpose for this paper is to outline a method to develop an ideal set of weight factors that can be utilized to conduct more accurate CBA. To this end, a matrix of all possible weight factors sets was developed. CBA was conducted for each set of weight factors to obtain a population of possible optimization solutions. Then a regression analysis was performed to establish the relationship between benefit and weight factors. Finally, a multi-objective genetic algorithm was applied to select the optimal set of weight factors. The findings from this study can be used by state DOTs to strategically manage their roadway systems in a cost effective manner.

  • PDF

Multiobjective optimization strategy based on kriging metamodel and its application to design of axial piston pumps (크리깅 메타모델에 기반한 다목적최적설계 전략과 액셜 피스톤 펌프 설계에의 응용)

  • Jeong, Jong Hyun;Baek, Seok Heum;Suh, Yong Kweon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.8
    • /
    • pp.893-904
    • /
    • 2013
  • In this paper, a Kriging metamodel-based multi-objective optimization strategy in conjunction with an NSGA-II(non-dominated sorted genetic algorithm-II) has been employed to optimize the valve-plate shape of the axial piston pump utilizing 3D CFD simulations. The optimization process for minimum pressure ripple and maximum pump efficiency is composed of two steps; (1) CFD simulation of the piston pump operation with various combination of six parameters selected based on the optimization principle, and (2) applying a multi-objective optimization approach based on the NSGA-II using the CFD data set to evaluate the Pareto front. Our exploration shows that we can choose an optimal trade-off solution combination to reach a target efficiency of the axial piston pump with minimum pressure ripple.

Application of Smart Isolation Platform for Microvibration Control of High-Tech Industry Facilities (첨단기술산업 시설물의 미진동제어를 위한 스마트 면진플랫폼의 적용)

  • Kim, Hyun-Su;Kang, Joo-Won;Kim, Young-Sik
    • Journal of Korean Association for Spatial Structures
    • /
    • v.14 no.2
    • /
    • pp.87-94
    • /
    • 2014
  • In this study, a smart isolation platform has been developed for control of microvibration of high-technology facilities, such as semi-conductor plants and TFT-LCD plants. Previously, microvibration control performance of a smart base isolation system has been investigated. This study compared microvibration control performance of a smart isolation platform with that of conventional base isolation and fixed base. For this purpose, train-induced ground acceleration is used for time history analysis. An MR damper was used to compose a smart isolation platform. A fuzzy logic controller was used as a control algorithm and it was optimized by a multi-objective genetic algorithm. Numerical analysis shows that a smart isolation platform can effectively control microvibration of a high-technology facility subjected to train-induced excitation compared with other models.

Estimation of genetic parameters of the productive and reproductive traits in Ethiopian Holstein using multi-trait models

  • Ayalew, Wondossen;Aliy, Mohammed;Negussie, Enyew
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1550-1556
    • /
    • 2017
  • Objective: This study estimated the genetic parameters for productive and reproductive traits. Methods: The data included production and reproduction records of animals that have calved between 1979 and 2013. The genetic parameters were estimated using multivariate mixed models (DMU) package, fitting univariate and multivariate mixed models with average information restricted maximum likelihood algorithm. Results: The estimates of heritability for milk production traits from the first three lactation records were $0.03{\pm}0.03$ for lactation length (LL), $0.17{\pm}0.04$ for lactation milk yield (LMY), and $0.15{\pm}0.04$ for 305 days milk yield (305-d MY). For reproductive traits the heritability estimates were, $0.09{\pm}0.03$ for days open (DO), $0.11{\pm}0.04$ for calving interval (CI), and $0.47{\pm}0.06$ for age at first calving (AFC). The repeatability estimates for production traits were $0.12{\pm}0.02$, for LL, $0.39{\pm}0.02$ for LMY, and $0.25{\pm}0.02$ for 305-d MY. For reproductive traits the estimates of repeatability were $0.19{\pm}0.02$ for DO, and to $0.23{\pm}0.02$ for CI. The phenotypic correlations between production and reproduction traits ranged from $0.08{\pm}0.04$ for LL and AFC to $0.42{\pm}0.02$ for LL and DO. The genetic correlation among production traits were generally high (>0.7) and between reproductive traits the estimates ranged from $0.06{\pm}0.13$ for AFC and DO to $0.99{\pm}0.01$ between CI and DO. Genetic correlations of productive traits with reproductive traits were ranged from -0.02 to 0.99. Conclusion: The high heritability estimates observed for AFC indicated that reasonable genetic improvement for this trait might be possible through selection. The $h^2$ and r estimates for reproductive traits were slightly different from single versus multi-trait analyses of reproductive traits with production traits. As single-trait method is biased due to selection on milk yield, a multi-trait evaluation of fertility with milk yield is recommended.

OPF with Environmental Constraints with Multi Shunt Dynamic Controllers using Decomposed Parallel GA: Application to the Algerian Network

  • Mahdad, B.;Bouktir, T.;Srairi, K.
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.55-65
    • /
    • 2009
  • Due to the rapid increase of electricity demand, consideration of environmental constraints in optimal power flow (OPF) problems is increasingly important. In Algeria, up to 90% of electricity is produced by thermal generators (vapor, gas). In order to keep the emission of gaseous pollutants like sulfur dioxide (SO2) and Nitrogen (NO2) under the admissible ecological limits, many conventional and global optimization methods have been proposed to study the trade-off relation between fuel cost and emissions. This paper presents an efficient decomposed Parallel GA to solve the multi-objective environmental/economic dispatch problem. At the decomposed stage the length of the original chromosome is reduced successively and adapted to the topology of the new partition. Two subproblems are proposed: the first subproblem is related to the active power planning to minimize the total fuel cost, and the second subproblem is a reactive power planning design based in practical rules to make fine corrections to the voltage deviation and reactive power violation using a specified number of shunt dynamic compensators named Static Var Compensators (SVC). To validate the robustness of the proposed approach, the algorithm proposed was tested on the Algerian 59-bus network test and compared with conventional methods and with global optimization methods (GA, FGA, and ACO). The results show that the approach proposed can converge to the near solution and obtain a competitive solution at a critical situation and within a reasonable time.

Multi-Objective Optimization of a Fan Blade Using NSGA-II (NSGA-II 를 통한 송풍기 블레이드의 다중목적함수 최적화)

  • Lee, Ki-Sang;Kim, Kwang-Yong;Samad, Abdus
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2690-2695
    • /
    • 2007
  • This work presents numerical optimization for design of a blade stacking line of a low speed axial flow fan with a fast and elitist Non-Dominated Sorting of Genetic Algorithm (NSGA-II) of multi-objective optimization using three-dimensional Navier-Stokes analysis. Reynolds-averaged Navier-Stokes (RANS) equations with ${\kappa}-{\varepsilon}$ turbulence model are discretized with finite volume approximations and solved on unstructured grids. Regression analysis is performed to get second order polynomial response which is used to generate Pareto optimal front with help of NSGA-II and local search strategy with weighted sum approach to refine the result obtained by NSGA-II to get better Pareto optimal front. Four geometric variables related to spanwise distributions of sweep and lean of blade stacking line are chosen as design variables to find higher performed fan blade. The performance is measured in terms of the objectives; total efficiency, total pressure and torque. Hence the motive of the optimization is to enhance total efficiency and total pressure and to reduce torque.

  • PDF

Robust inverse identification of piezoelectric and dielectric effective behaviors of a bonded patch to a composite plate

  • Benjeddou, Ayech;Hamdi, Mohsen;Ghanmi, Samir
    • Smart Structures and Systems
    • /
    • v.12 no.5
    • /
    • pp.523-545
    • /
    • 2013
  • Piezoelectric and dielectric behaviors of a piezoceramic patch adhesively centered on a carbon composite plate are identified using a robust multi-objective optimization procedure. For this purpose, the patch piezoelectric stress coupling and blocked dielectric constants are automatically evaluated for a wide frequency range and for the different identifiable behaviors. Latters' symmetry conditions are coded in the design plans serving for response surface methodology-based sensitivity analysis and meta-modeling. The identified constants result from the measured and computed open-circuit frequencies deviations minimization by a genetic algorithm that uses meta-model estimated frequencies. Present investigations show that the bonded piezoceramic patch has effective three-dimensional (3D) orthotropic piezoelectric and dielectric behaviors. Besides, the sensitivity analysis indicates that four constants, from eight, dominate the 3D orthotropic behavior, and that the analyses can be reduced to the electromechanically coupled modes only; therefore, in this case, and if only the dominated parameters are optimized while the others keep their nominal values, the resulting piezoelectric and dielectric behaviors are found to be transverse-isotropic. These results can help designing piezoceramics smart composites for various applications like noise, vibration, shape, and health control.

Determination of Optimal Washland combination by Dynamic wave flood routing (동역학적 홍수추적을 통한 대규모 유역에서의 천변저류지 최적조합의 결정)

  • Park, Cheong-Hoon;Kim, Min-Seok;Oh, Byung-Hwa;Kim, Joong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.292-296
    • /
    • 2010
  • 본 연구에서는 상대적으로 소규모 홍수저감시설인 천변저류지의 설치를 통하여 대규모 유역 하도 전체에서의 홍수위 저감효과를 평가하고 그 효율을 극대화 하는 방안을 제시하였다. 본 연구에 적용한 다목적 최적화 기법(Multi-objective Optimization)으로는 NSGA-II(Non-dominated Sorting Genetic Algorithm II) 알고리즘을 적용하였으며 천변저류지 설치에 따른 수위 영향구간 분석 및 유역 전체 하도구간에서 전반적으로 발생하는 수리, 수문학적인 변화 평가 및 천변저류지 최적 조합을 선정하기 위하여 천변저류지의 용량을 최소화하면서 하도 전 구간에서의 수위 저감량을 최대화할 수 있도록 최적화 알고리즘의 목적함수를 설정하였다. 천변저류지 설치에 따른 홍수량의 변화를 해석하기 위하여 안성천 유역에 대하여 동역학적 홍수추적을 수행하였으며 저류형 구조물의 설치에 따른 홍수량 저감효과 및 그에 따른 홍수위의 변화를 동시에 해석하기 위하여 UNET 모형을 기반으로 한 HEC-RAS 부정류 해석을 실시하였다. 천변저류지 조합별로 다양한 경우의 수가 존재하므로 HEC-RAS 구동 모듈인 HECRAS Controller를 Visual Basic으로 코딩된 최적화 알고리즘 프로그램과 연동함으로써 각 경우의 수별로 동역학적 홍수추적 및 부정류 해석을 실시함으로써 천변저류지 조합별 각 측점에서의 홍수량 및 홍수위를 산정하여 저류지 용량을 최소화하면서 각 하도 측점별 수위저감량을 최대화 하는 최적해 집단(Pareto Front)을 산정하여 제시하였다.

  • PDF