• 제목/요약/키워드: multi modality imaging

검색결과 20건 처리시간 0.023초

IMAGING IN RADIATION THERAPY

  • Kim Si-Yong;Suh Tae-Suk
    • Nuclear Engineering and Technology
    • /
    • 제38권4호
    • /
    • pp.327-342
    • /
    • 2006
  • Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomogaphy). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as intensity modulated radiation therapy (IMRT), gated radiation therapy, tomotherapy, and image guided radiation therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging fur static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been In significant improvement. Imaging equipments and their common applications that are in active use and/or under development in radiation therapy are reviewed.

분자영상 획득을 위한 핵의학 영상기기 (Nuclear Medicine Imaging Instrumentations for Molecular Imaging)

  • 정용현;송태용;최용
    • 대한핵의학회지
    • /
    • 제38권2호
    • /
    • pp.131-139
    • /
    • 2004
  • Small animal models are extensively utilized in the study of biomedical sciences. Current animal experiments and analysis are largely restricted to in vitro measurements and need to sacrifice animals to perform tissue or molecular analysis. This prevents researchers from observing in vivo the natural evolution of the process under study. Imaging techniques can provide repeatedly in vivo anatomic and molecular information noninvasively. Small animal imaging systems have been developed to assess biological process in experimental animals and increasingly employed in the field of molecular imaging studies. This review outlines the current developments in nuclear medicine imaging instrumentations including fused multi-modality imaging systems for small animal imaging.

Development of a multi-modal imaging system for single-gamma and fluorescence fusion images

  • Young Been Han;Seong Jong Hong;Ho-Young Lee;Seong Hyun Song
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3844-3853
    • /
    • 2023
  • Although radiation and chemotherapy methods for cancer therapy have advanced significantly, surgical resection is still recommended for most cancers. Therefore, intraoperative imaging studies have emerged as a surgical tool for identifying tumor margins. Intraoperative imaging has been examined using conventional imaging devices, such as optical near-infrared probes, gamma probes, and ultrasound devices. However, each modality has its limitations, such as depth penetration and spatial resolution. To overcome these limitations, hybrid imaging modalities and tracer studies are being developed. In a previous study, a multi-modal laparoscope with silicon photo-multiplier (SiPM)-based gamma detection acquired a 1 s interval gamma image. However, improvements in the near-infrared fluorophore (NIRF) signal intensity and gamma image central defects are needed to further evaluate the usefulness of multi-modal systems. In this study, an attempt was made to change the NIRF image acquisition method and the SiPM-based gamma detector to improve the source detection ability and reduce the image acquisition time. The performance of the multi-modal system using a complementary metal oxide semiconductor and modified SiPM gamma detector was evaluated in a phantom test. In future studies, a multi-modal system will be further optimized for pilot preclinical studies.

핵의학 영상기기의 최근 진보 (Recent Advances in Nuclear Medicine Imaging Instrumentation)

  • 정진호;최용;홍기조;민병준;호위;강지훈
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권2호
    • /
    • pp.98-111
    • /
    • 2008
  • This review introduces advances in clinical and pre-clinical single photon emission computed tomography (SPECT) and positron emission tomography (PET) providing noninvasive functional images of biological processes. Development of new collimation techniques such as multi-pinhole and slit-slat collimators permits the improvement of system spatial resolution and sensitivity of SPECT. Application specific SPECT systems using smaller and compact solid-state detector have been customized for myocardial perfusion imaging with higher performance. Combined SPECT/CT providing improved diagnostic and functional capabilities has been introduced. Advances in PET and CT instrumentation have been incorporated in the PET/CT design that provide the metabolic information from PET superimposed on the anatomic information from CT. Improvements in the sensitivity of PET have achieved by the fully 3D acquisition with no septa and the extension of axial field-of-view. With the development of faster scintillation crystals and electronics, time-of-flight (TOF) PET is now commercially available allowing the increase in the signal-to-noise ratio by incorporation of TOF information into the PET reconstruction process. Hybrid PET/SPECT/CT systems has become commercially available for molecular imaging in small animal models. The pre-clinical systems have improved spatial resolution using depth-of-interaction measurement and new collimators. The recent works on solid state detector and dual modality nuclear medicine instrumentations incorporating MRI and optical imagers will also be discussed.

다중영상기기의 응용 소프트웨어 (Multimodality and Application Software)

  • 임기천
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권2호
    • /
    • pp.153-163
    • /
    • 2008
  • 다중영상기기는 1990년대 초에 처음 개발되어 현재 주요 영상 장비 회사에서 상품으로 개발되어 판매되고 있다. 단순한 소프트웨어적인 정합과 융합을 통해 해부학적 영상과 기능적 영상의 상호 보완하는 단계에서 발전하여 하드웨어적으로 정합하는 하드웨어의 개발은 새로운 연구의 시작이다. 다중영상기기의 발전 이전에는 해부학적 구조를 보여주는 영상 장비와 기능적 영상을 표현하는 장비가 각각 고 분해능과 고 해상도로 많은 발전을 이루어 왔다. 현재는 각 영상 장비의 특징을 살려 효과적으로 결합시킨 다중영상기기의 개발이 활발하게 이루어지고 있다. 다중영상기기는 단순하게 두 장비를 결합시키는 개념에서 기능적 영상에서 필요한 감쇠 보정을 하면서 동시에 해부학적 위치를 융합 영상 형태로 표현하는 새로운 영상 장비로 발전하고 있다 다중영상기기의 특징을 살릴 수 있는 프로토콜이 개발되고 하드웨어적으로도 상호 보완적으로 결합되고 있다. 실제로 PET/CT와 같은 다중영상기기는 임상적으로 중요한 역할을 하고 있으며 PET 영상기기를 대체하고 있다. PET/CT 스캐너는 PET에서 나오는 기능적 영상과 CT에서 나오는 해부학적 영상뿐만 아니라 융합 영상을 함께 보여 주므로 임상적으로 유용한 정보를 제공하고 있다. 현재 SPECT/CT는 아직 보급이 많이 되지 않았으나 PET/CT와 같이 임상적으로 유용한 SPECT와 CT 장비가 결합된 상품들이 나오고 있어 그 시장이 점점 성장할 것으로 기대된다. 다중영상기기는 각각의 단독 영상장비에서 갖고 있는 문제뿐만 아니라 두 영상 장비를 결합시키므로 인해 새로운 문제들이 발생하고 있다. 대표적으로 호흡에 의한 움직임, 조영제의 영향, 금속 물질의 영향과 환자의 피폭에 관한 문제가 있다. 이를 해결하기 위해 새로운 프로토콜과 프로세싱 방법이 개발되고 있다. 뇌를 동시에 촬영할 수 있는 PET/MR의 개발은 뇌 과학에 많은 발전을 줄 것으로 기대된다. PET/MR의 개발은 PET/CT 에서 촬영한 영상의 일부분을 대체할 것으로 예상된다. MR 영상이 CT 영상보다 우수한 분해능을 보이는 분야에서는 PET/MR을 이용한 검사와 연구가 활발하게 진행될 것으로 보인다. 해부학적 영상과 기능적 영상을 결합시킨 융합 영상을 함께 제공하는 다중영상기기는 환자의 질병을 진단뿐만 아니라 치료 후의 효과를 보는데 있어서 중요한 역할을 할 것으로 기대된다. 또 앞으로 검사 목적에 맞는 다양한 다중영상기기의 개발이 이루어질 것으로 기대된다.

악성중피종에서 $^{18}F-FDG$ PET의 임상응용 (Clinical Application of $^{18}F-FDG$ PET in Malignant Mesothelioma)

  • 이은정
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제42권sup1호
    • /
    • pp.157-161
    • /
    • 2008
  • Malignant pleural mesothelioma (MPM) has a poor prognosis and a strong association with exposure to asbestos. Although there are not generally accepted guidelines for treatment of MPM, recent reports suggest that multi modality therapy combining chemotherapy, radiotherapy, and surgery can improve the survival of patients with MPM. Therefore exact staging is required to decide the best treatment option. However, it is well known that there are many difficulties in determining precise preoperative stage, predicting prognosis, and monitoring response to therapy with conventional imaging modalities such as CT and MRI in MPM. Recently PET with $^{18}F-FDG$ comes into the spotlight as an important staging method. There is increasing evidence that PET is superior to other conventional imaging modalities in diagnosis and staging of MPM. Particularly PET/CT improves the diagnostic and staging accuracy over PET or CT alone in MPM because it provides anatomic imaging data as well as functional information. PET and PET/CT are also useful for monitoring response to therapy and SUV is reported as a prognostic factor in MPM.

The Emerging Role of Fast MR Techniques in Traumatic Brain Injury

  • Yoo, Roh-Eul;Choi, Seung Hong
    • Investigative Magnetic Resonance Imaging
    • /
    • 제25권2호
    • /
    • pp.76-80
    • /
    • 2021
  • Post-concussion syndrome (PCS) following mild traumatic brain injury (mTBI) is a major factor that contributes to the increased socioeconomic burden caused by TBI. Myelin loss has been implicated in the development of PCS following mTBI. Diffusion tensor imaging (DTI), a traditional imaging modality for the evaluation of axonal and myelin integrity in mTBI, has intrinsic limitations, including its lack of specificity and its time-consuming and labor-intensive post-processing analysis. More recently, various fast MR techniques based on multicomponent relaxometry (MCR), including QRAPMASTER, mcDESPOT, and MDME sequences, have been developed. These MCR-based sequences can provide myelin water fraction/myelin volume fraction, a quantitative parameter more specific to myelin, which might serve as a surrogate marker of myelin volume, in a clinically feasible time. In this review, we summarize the clinical application of the MCR-based fast MR techniques in mTBI patients.

Imaging Cancer Metabolism

  • Momcilovic, Milica;Shackelford, David B.
    • Biomolecules & Therapeutics
    • /
    • 제26권1호
    • /
    • pp.81-92
    • /
    • 2018
  • It is widely accepted that altered metabolism contributes to cancer growth and has been described as a hallmark of cancer. Our view and understanding of cancer metabolism has expanded at a rapid pace, however, there remains a need to study metabolic dependencies of human cancer in vivo. Recent studies have sought to utilize multi-modality imaging (MMI) techniques in order to build a more detailed and comprehensive understanding of cancer metabolism. MMI combines several in vivo techniques that can provide complementary information related to cancer metabolism. We describe several non-invasive imaging techniques that provide both anatomical and functional information related to tumor metabolism. These imaging modalities include: positron emission tomography (PET), computed tomography (CT), magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS) that uses hyperpolarized probes and optical imaging utilizing bioluminescence and quantification of light emitted. We describe how these imaging modalities can be combined with mass spectrometry and quantitative immunochemistry to obtain more complete picture of cancer metabolism. In vivo studies of tumor metabolism are emerging in the field and represent an important component to our understanding of how metabolism shapes and defines cancer initiation, progression and response to treatment. In this review we describe in vivo based studies of cancer metabolism that have taken advantage of MMI in both pre-clinical and clinical studies. MMI promises to advance our understanding of cancer metabolism in both basic research and clinical settings with the ultimate goal of improving detection, diagnosis and treatment of cancer patients.

방사성핵종 이용 치료에서 핵의학영상을 이용한 흡수선량평가 (Internal Radiation Dosimetry using Nuclear Medicine Imaging in Radionuclide Therapy)

  • 김경민;변병현;천기정;임상무
    • Nuclear Medicine and Molecular Imaging
    • /
    • 제41권4호
    • /
    • pp.265-271
    • /
    • 2007
  • Radionuclide therapy has been an important field in nuclear medicine. In radionuclide therapy, relevant evaluation of Internally absorbed dose is essential for the achievement of efficient and sufficient treatment of incurable disease, and can be accomplish by means of accurate measurement of radioactivity in body and its changes with time. Recently, the advances of nuclear medicine imaging and multi modality imaging processing techniques can provide change of more accurate and easier measurement of the measures commented above, in cooperation of conventional imaging based approaches. in this review, basic concept for internal dosimetry using nuclear medicine imaging is summarized with several check points which should be considered In real practice.