IMAGING IN RADIATION THERAPY

  • Kim Si-Yong (Department of Radiation Oncology, University of Florida) ;
  • Suh Tae-Suk (Department of Biomedical Engineering, Catholic Medical Center)
  • Published : 2006.06.01

Abstract

Radiation therapy is an important part of cancer treatment in which cancer patients are treated using high-energy radiation such as x-rays, gamma rays, electrons, protons, and neutrons. Currently, about half of all cancer patients receive radiation treatment during their whole cancer care process. The goal of radiation therapy is to deliver the necessary radiation dose to cancer cells while minimizing dose to surrounding normal tissues. Success of radiation therapy highly relies on how accurately 1) identifies the target and 2) aim radiation beam to the target. Both tasks are strongly dependent of imaging technology and many imaging modalities have been applied for radiation therapy such as CT (Computed Tomography), MRI (Magnetic Resonant Image), and PET (Positron Emission Tomogaphy). Recently, many researchers have given significant amount of effort to develop and improve imaging techniques for radiation therapy to enhance the overall quality of patient care. For example, advances in medical imaging technology have initiated the development of the state of the art radiation therapy techniques such as intensity modulated radiation therapy (IMRT), gated radiation therapy, tomotherapy, and image guided radiation therapy (IGRT). Capability of determining the local tumor volume and location of the tumor has been significantly improved by applying single or multi-modality imaging fur static or dynamic target. The use of multi-modality imaging provides a more reliable tumor volume, eventually leading to a better definitive local control. Image registration technique is essential to fuse two different image modalities and has been In significant improvement. Imaging equipments and their common applications that are in active use and/or under development in radiation therapy are reviewed.

Keywords

References

  1. O. Glasser, Wilhelm Conrad Rontgen and the early history of the Roentgen rays, Charles C. Thomas, Sprinfield (1934)
  2. O. Glasser, Dr. W. C. Rontgen, Charles C. Thomas, Springfield (1945)
  3. W. R. Nitske, The life of Wilhem Conrad Rontgen: Discoverer of the x-ray., University of Arizona Press, Tucson (1971)
  4. P. Curie, M. P. Curie and G. Bemont, 'Sur une nouvelle substance fortement radioactive contenue dans la pechblende,' Compt Rend Acad Sci (Paris), 1215, (1898)
  5. D. Watkins-Bruner, G. Moore-Higgs and M. Hass, Outcomes in Radiation Therapy, Jones and Bartlett Publishers, Sudbury, Massachusetts (2001)
  6. E. J. Hall, Radiobiology for the Radiologist, 5th, Lippincott Williams & Wilkins, Philadelphia (2000)
  7. F. M. Khan, The Physics of Radiation Therapy, 3rd, Lippincott Williams & Wilkins, Philadelphia (2003)
  8. E. S. Chernak, A. Rodriguezantunez, G. L. Jelden, R. S. Dhaliwal and P. S. Lavik, 'Use of Computed Tomography for Radiation-Therapy Treatment Planning,' Radiology, 117, 613, (1975) https://doi.org/10.1148/117.3.613
  9. G. D. Fullerton, W. Sewchand, J. T. Payne and S. H. Levitt, 'Ct Determination of Parameters for Inhomogeneity Corrections in Radiation-Therapy of Esophagus,' Radiology, 126, 167, (1978) https://doi.org/10.1148/126.1.167
  10. R. A. Geise and E. C. Mccullough, 'Use of Ct Scanners in Megavoltage Photon-Beam Therapy Planning,' Radiology, 124, 133, (1977) https://doi.org/10.1148/124.1.133
  11. M. Goitein, 'Computed-Tomography in Planning Radiation-Therapy,' International Journal of Radiation Oncology Biology Physics, 5, 445, (1979) https://doi.org/10.1016/0360-3016(79)91230-6
  12. P. Hobday, N. J. Hodson, J. Husband, R. P. Parker and J. S. Macdonald, 'Computed-Tomography Applied to Radiotherapy Treatment Planning - Techniques and Results,' Radiology, 133, 477, (1979) https://doi.org/10.1148/133.2.477
  13. P. K. Kijewski and B. E. Bjarngard, 'Use of Computed Tomography Data for Radiotherapy Dose Calculations,' International Journal of Radiation Oncology Biology Physics, 4, 429, (1978) https://doi.org/10.1016/0360-3016(78)90073-1
  14. J. E. Munzenrider, M. Pilepich, J. B. Reneferrero, B. L. Carter and I. Tchakarova, 'Use of Body Scanner in Radiotherapy Treatment Planning,' Cancer, 40, 170, (1977) https://doi.org/10.1002/1097-0142(197707)40:1<170::AID-CNCR2820400128>3.0.CO;2-9
  15. R. P. Parker, P. A. Hobday and K. J. Cassell, 'Direct Use of Ct Numbers in Radiotherapy Dosage Calculations for Inhomogeneous-Media,' Physics in Medicine and Biology, 24, 802, (1979) https://doi.org/10.1088/0031-9155/24/4/011
  16. M. R. Sontag, J. J. Battista, M. J. Bronskill, J. R. Cunningham, 'Implications of Computed Tomography for Inhomogeneity Corrections in Photon Beam Dose Calculations,' Radiology, 124, 143, (1977) https://doi.org/10.1148/124.1.143
  17. ICRU, Prescribing, recoding and reporting photon beam therapy. ICRU Report 50., International Commission on Radiation Units and Measurements, Bethesda, Maryland (1993)
  18. ICRU, Prescribing, recoding and reporting photon beam therapy (supplement to ICRU Report 50). ICRU Report 62, International Commission of Radiation Units and Measurement, Bethesda, Maryland (1999)
  19. G. J. Kutcher, L. Coia, M. Gillin, W. F. Hanson, S. Leibel, R. J. Morton, J. R. Palta, J. A. Purdy, L. E. Reinstein, G. K. Svensson, M. Weller and L. Wingfield, 'Comprehensive Qa for Radiation Oncology - Report of Aapm Radiation-Therapy Committee Task-Group-40,' Medical Physics, 21, 581, (1994) https://doi.org/10.1118/1.597316
  20. J. Dong, T. Dickfeld, D. Dalal, A. Cheema, J. E. Marine, C. R. Vasamreddy, C. A. Henrikson, H. R. Halperin, R. D. Berger, J. A. C. Lima, D. A. Bluemke and H. Calkins, 'Initial experience in the use of integrated electroanatomic mapping with three-dimensional MR/CT images to guide catheter ablation of atrial fibrillation,' Journal of Cardiovascular Electrophysiology, 17, 459, (2006) https://doi.org/10.1111/j.1540-8167.2006.00425.x
  21. P. M. Kistler, M. J. Earley, S. Harris, D. Abrams, S. Ellis, S. C. Sporton and R. J. Schilling, 'Validation of threedimensional cardiac image integration: Use of integrated CT image into electroanatomic mapping system to perform catheter ablation of atrial fibrillation,' Journal of Cardiovascular Electrophysiology, 17, 341, (2006) https://doi.org/10.1111/j.1540-8167.2006.00371.x
  22. M. Matsuki, M. Tanikake, H. Kani, F. Tatsugami, Y. Inada, S. Kanazawa, T. Kanamoto, S. Yoshikawa, I. Narabayashi, S. W. Lee, E. Nomura, J. Okuda and N. Tanigawa, 'Dualphase 3D CT angiography during a single breath-hold using 16-MDCT: Assessment of vascular anatomy before laparoscopic gastrectomy,' American Journal of Roentgenology, 186, 1079, (2006) https://doi.org/10.2214/AJR.04.0733
  23. C. Noller, R. M. Hirschberg, D. H. W. Gronemeyer, W. Henninger and K. D. Budras, 'Computed tomographyanatomy of the normal feline nasolacrimal drainage system,' Veterinary Radiology & Ultrasound, 47, 53, (2006) https://doi.org/10.1111/j.1740-8261.2005.00105.x
  24. J. Dong, H. Calkins, S. B. Solomon, S. H. Lai, D. Dalal, A. Lardo, E. Brem, A. Preiss, R. D. Berger, H. Halperin and T. Dickfeld, 'Integrated electroanatomic mapping with threedimensional computed tomographic images for real-time guided ablations,' Circulation, 113, 186, (2006) https://doi.org/10.1161/CIRCULATIONAHA.105.565200
  25. J. T. Bushberg, J. A. Seibert, J. Edwin M. Leidholdt and J. M. Boone, The Essential Physics of Medical Imaging, 2nd, Lippincott Williams & Wilkins, Philadelphia (2002)
  26. M. L. Kessler, S. Pitluck, P. Petti and J. R. Castro, 'Integration of Multimodality Imaging Data for Radiotherapy Treatment Planning,' International Journal of Radiation Oncology Biology Physics, 21, 1653, (1991) https://doi.org/10.1016/0360-3016(91)90345-5
  27. C. A. Pelizzari, G. T. Y. Chen, D. R. Spelbring, C. T. Chen and R. R. Weichselbaum, 'Accurate 3-Dimensional Registration of Ct, Pet, and or Mr Images of the Brain,' Journal of Computer Assisted Tomography, 13, 20, (1989) https://doi.org/10.1097/00004728-198901000-00004
  28. D. E. Heron, R. P. Smith and R. S. Andrade, 'Advances in image-guided radiation therapy - The role of PET-CT,' Medical Dosimetry, 31, 3, (2006) https://doi.org/10.1016/j.meddos.2005.12.006
  29. H. Anderson and P. Price, 'What does positron emission tomography offer oncology?,' European Journal of Cancer, 36, 2028, (2000) https://doi.org/10.1016/S0959-8049(00)00292-6
  30. T. H. A. Arulampalam, D. C. Costa, M. Loizidou, P. J. Ell, D. Visvikis and I. Taylor, 'Positron emission tomography and colorectal cancer,' British Journal of Surgery, 88, 176, (2001) https://doi.org/10.1046/j.1365-2168.2001.01657.x
  31. U. Roelcke and K. L. Leenders, 'PET in neuro-oncology,' Journal of Cancer Research and Clinical Oncology, 127, 2, (2001) https://doi.org/10.1007/s004320000158
  32. A. Fischer, M. Herzau, S. Kussmann, T. Opfermann, M. Gunther and E. J. Seidel, 'Objective evidence of physical therapy in treatment of a dog with activated arthrosis of talocalcanean joint by using positron-emission-tomography (PET) - A case study,' Physikalische Medizin Rehabilitationsmedizin Kurortmedizin, 15, 364, (2005) https://doi.org/10.1055/s-2005-915254
  33. O. Schillaci and G. Simonetti, 'Fusion imaging in nuclear medicine - Applications of dual-modality systems in oncology,' Cancer Biotherapy and Radiopharmaceuticals, 19, 1, (2004) https://doi.org/10.1089/108497804773391621
  34. P. Kanter, A. Zeidman, J. Streifler, V. Marmelstein, E. Even-Sapir, U. Metser, G. Y. Stein and A. M. Cohen, 'PET-CT imaging of combined brachial and lumbosacral neurolymphomatosis,' European Journal of Haematology, 74, 66, (2005) https://doi.org/10.1111/j.1600-0609.2004.00369.x
  35. A. Trojan, M. Jermann, C. Taverna and T. F. Hany, 'Fusion PET-CT imaging of neurolymphomatosis,' Annals of Oncology, 13, 802, (2002) https://doi.org/10.1093/annonc/mdf057
  36. N. Ghanem, M. Uhl, I. Brink, O. Schafer, T. Kelly, E. Moser and M. Langer, 'Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone,' European Journal of Radiology, 55, 41, (2005) https://doi.org/10.1016/j.ejrad.2005.01.016
  37. C. G. Diederichs, L. Staib, G. Glatting, H. G. Beger and S. N. Reske, 'FDG PET: Elevated plasma glucose reduces both uptake and detection rate of pancreatic malignancies,' Journal of Nuclear Medicine, 39, 1030, (1998)
  38. M. Zimny, R. Bares, J. Fass, G. Adam, U. Cremerius, B. Dohmen, P. Klever, O. Sabri, V. Schumpelick and U. Buell, 'Fluorine-18 fluorodeoxyglucose positron emission tomography in the differential diagnosis of pancreatic carcinoma: A report of 106 cases,' European Journal of Nuclear Medicine, 24, 678, (1997) https://doi.org/10.1007/BF00841409
  39. N. N. Dave, R. Walia, M. Shor and A. Ali, 'Effect of hyperglycemia on tumoral uptake of F-18FDG,' Clinical Nuclear Medicine, 27, 682, (2002) https://doi.org/10.1097/00003072-200209000-00022
  40. F. Crippa, C. Gavazzi, F. Bozzetti, C. Chiesa, C. Pascali, A. Bogni, V. DeSanctis, D. Decise, M. Schiavini, G. Cucchetti and E. Bombardieri, 'The influence of blood glucose levels on [18F]fluorodeoxyglucose (FDG) uptake in cancer: A pet study in liver metastases from colorectal carcinomas,' Tumori, 83, 748, (1997)
  41. K. Kubota, R. Kubota, S. Yamada, M. Tada, T. Takahashi and R. Iwata, 'Re-evaluation of myocardial FDG uptake in hyperglycemia,' Journal of Nuclear Medicine, 37, 1713, (1996)
  42. E. Brianzoni, G. Rossi, S. Ancidei, A. Berbellini, C. Cidda F. Capoccetti, P. D'Avenia, S. Fattori, G. C. Montini, G. Valentini and A. Proietti, 'Radiotherapy planning: PET/CT scanner performances in the definition of gross tumour volume and clinical target volume,' European Journal of Nuclear Medicine and Molecular Imaging, 32, 1392, (2005) https://doi.org/10.1007/s00259-005-1845-5
  43. P. Giraud, L. Simon, M. Saliou, F. Reboul, R. Garcia, C. Carrie, U. Lerolle, J. C. Rosenwald and J. M. Cosset, 'Respiratory gated radiotherapy: the 4D radiotherapy,' Bulletin Du Cancer, 92, 83, (2005)
  44. P. Giraud, E. Yorke, E. C. Ford, R. Wagman, G. S. Mageras, H. Amols, C. C. Ling and K. E. Rosenzweig, 'Reduction of organ motion in lung tumors with respiratory gating,' Lung Cancer, 51, 41, (2006) https://doi.org/10.1016/j.lungcan.2005.08.008
  45. J. Hanley, M. M. Debois, D. Mah, G. S. Mageras, A. Raben, K. Rosenzweig, B. Mychalczak, L. H. Schwartz, W. Lutz P. J. Gloeggler, C. C. Ling, S. A. Leibel, Z. Fuks and G. J. Kutcher, 'Deep inspiration breath-hold technique for lung tumors: The potential value of target immobilization and reduced lung density in dose escalation,' International Journal of Radiation Oncology Biology Physics, 45, 603, (1999) https://doi.org/10.1016/S0360-3016(99)00154-6
  46. J. Mechalakos, E. Yorke, G. S. Mageras, A. Hertanto, A. Jackson, C. Obcemea, K. Rosenzweig and C. C. Ling, 'Dosimetric effect of respiratory motion in external beam radiotherapy of the lung,' Radiotherapy and Oncology, 71, 191, (2004) https://doi.org/10.1016/j.radonc.2004.01.011
  47. K. E. Rosenzweig, E. Yorke, H. Amols, G. S. Mageras, P. Giraud, M. S. Katz and S. A. Leibel, 'Tumor motion control in the treatment of non small cell lung cancer,' Cancer Investigation, 23, 129, (2005) https://doi.org/10.1081/CNV-200050445
  48. P. J. Keall, S. Joshi, S. S. Vedam, J. V. Siebers, V. R. Kini and R. Mohan, 'Four-dimensional radiotherapy planning for DMLC-based respiratory motion tracking,' Medical Physics, 32, 942, (2005) https://doi.org/10.1118/1.1879152
  49. M. Engelsman, G. C. Sharp, T. Bortfeld, R. Onimaru and H. Shirato, 'How much margin reduction is possible through gating or breath hold?,' Physics in Medicine and Biology, 50, 477, (2005) https://doi.org/10.1088/0031-9155/50/3/006
  50. G. Starkschall, K. M. Forster, K. Kitamura, A. Cardenas, S. L. Tucker and C. W. Stevens, 'Correlation of gross tumor volume excursion with potential benefits of respiratory gating,' International Journal of Radiation Oncology Biology Physics, 60, 1291, (2004) https://doi.org/10.1016/j.ijrobp.2004.07.707
  51. Y. E. Ko, Y. Suh, S. D. Ahn, S. W. Lee, S. S. Shin, J. H. Kim, E. K. Choi and B. Y. Yi, 'Immobilization effect of air-injected blanket (AIB) for abdomen fixation,' Medical Physics, 32, 3363, (2005) https://doi.org/10.1118/1.2047783
  52. D. J. W. Kim, B. R. Murray, R. Halperin and W. H. Y. Roa, 'Held-breath self-gating technique for radiotherapy of nonsmall-cell lung cancer: A feasibility study,' International Journal of Radiation Oncology Biology Physics, 49, 43, (2001) https://doi.org/10.1016/S0360-3016(00)01372-9
  53. J. S. Stromberg, M. B. Sharpe, L. H. Kim, V. R. Kini, D. A. Jaffray, A. A. Martinez and J. W. Wong, 'Active breathing control (ABC) for Hodgkin's disease: Reduction in normal tissue irradiation with deep inspiration and implications for treatment,' International Journal of Radiation Oncology Biology Physics, 48, 797, (2000) https://doi.org/10.1016/S0360-3016(00)00681-7
  54. J. W. Wong, M. B. Sharpe, D. A. Jaffray, V. R. Kini, J. M. Robertson, J. S. Stromberg and A. A. Martinez, 'The use of active breathing control (ABC) to reduce margin for breathing motion,' International Journal of Radiation Oncology Biology Physics, 44, 911, (1999) https://doi.org/10.1016/S0360-3016(99)00056-5
  55. J. W. Wong, M. B. Sharpe, D. A. Jaffray, J. M. Robertson, J. S. Stromberg, V. R. Kini and A. A. Martinez, 'The use of Active Breathing Control (ABC) to minimize breathing motion during radiation therapy.,' International Journal of Radiation Oncology Biology Physics, 39, 164, (1997) https://doi.org/10.1016/S0360-3016(97)80617-7
  56. D. Mah, J. Hanley, K. E. Rosenzweig, E. Yorke, L. Braban, C. C. Ling, S. A. Leibel and G. Mageras, 'Technical aspects of the deep inspiration breath-hold technique in the treatment of thoracic cancer,' International Journal of Radiation Oncology Biology Physics, 48, 1175, (2000) https://doi.org/10.1016/S0360-3016(00)00747-1
  57. L. A. Dawson, K. K. Brock, S. Kazanjian, D. Fitch, C. J. McGinn, T. S. Lawrence, R. K. Ten Haken and J. Balter, 'The reproducibility of organ position using active breathing control (ABC) during liver radiotherapy,' International Journal of Radiation Oncology Biology Physics, 51, 1410, (2001) https://doi.org/10.1016/S0360-3016(01)02653-0
  58. K. E. Sixel, M. C. Aznar and Y. C. Ung, 'Deep inspiration breath hold to reduce irradiated heart volume in breast cancer patients,' International Journal of Radiation Oncology Biology Physics, 49, 199, (2001) https://doi.org/10.1016/S0360-3016(00)01455-3
  59. V. M. Remouchamps, N. Letts, F. A. Vicini, M. B. Sharpe, L. L. Kestin, P. Y. Chen, A. A. Martinez and J. W. Wong, 'Initial clinical experience with moderate deep-inspiration breath hold using an active breathing control device in the treatment of patients with left-sided breast cancer using external beam radiation therapy,' International Journal of Radiation Oncology Biology Physics, 56, 704, (2003) https://doi.org/10.1016/S0360-3016(03)00010-5
  60. P. Keall, S. Vedam, R. George, J. Siebers and T. Chung, 'The clinical implementation of respiratory gated intensity modulated radiotherapy,' Lung Cancer, 49, S100, (2005) https://doi.org/10.1016/S0169-5002(05)80443-X
  61. S. B. Jiang, R. Berbeco, J. Wolfgang, G. Sharp, K. Doppke, T. Neicu, Y. Chen, P. Busse and G. Chen, 'Image-guided respiration-gated treatment,' Medical Physics, 32, 2160, (2005)
  62. J. Zaporozhan, S. Ley, R. Unterhinninghofen, Y. Saito, M. Fabel-Schulte, S. Keller, G. Szabo and H. U. Kauczor, 'Freebreathing three-dimensional computed tomography of the lung using prospective respiratory gating - Charge-coupled device camera and loser sensor device in an animal experiment,' Investigative Radiology, 41, 468, (2006) https://doi.org/10.1097/01.rli.0000208926.98693.b6
  63. M. Dawood, N. Lang, X. Y. Jiang and K. P. Schafers, 'Lung motion correction on respiratory gated 3-D PET/CT images,' Ieee Transactions on Medical Imaging, 25, 476, (2006) https://doi.org/10.1109/TMI.2006.870892
  64. X. A. Li, C. Stepaniak and E. Gore, 'Technical and dosimetric aspects of respiratory gating using a pressure-sensor motion monitoring system,' Medical Physics, 33, 145, (2006) https://doi.org/10.1118/1.2147743
  65. H. Shirato, S. Shimizu, T. Shimizu, T. Nishioka and K. Miyasaka, 'Real-time tumour-tracking radiotherapy,' Lancet, 353, 1331, (1999) https://doi.org/10.1016/S0140-6736(99)00700-X
  66. S. Shimizu, H. Shirato, S. Ogura, H. Akita-Dosaka, K. Kagei K. Kitamura, T. Nishioka, M. Nishimura and K. Miyasaka, 'Detection of lung tumor movement in real-time tumortracking radiotherapy,' International Journal of Radiation Oncology Biology Physics, 51, 304, (2001) https://doi.org/10.1016/S0360-3016(01)01641-8
  67. H. Shirato, S. Shimizu, K. Kitamura, T. Nishioka, K. Kagei, S. Hashimoto, H. Aoyama, T. Kunieda, N. Shinohara, H. Dosaka-Akita and K. Miyasaka, 'Four-dimensional treatment planning and fluoroscopic real-time tumor tracking radiotherapy for moving tumor,' International Journal of Radiation Oncology Biology Physics, 48, 435, (2000) https://doi.org/10.1016/S0360-3016(00)00625-8
  68. H. Shirato, S. Shimizu, T. Kunieda, K. Kitamura, M. van Herk, K. Kagei, T. Nishioka, S. Hashimoto, K. Fujita, H. Aoyama, K. Tsuchiya, K. Kudo and K. Miyasaka, 'Physical aspects of a real-time tumor-tracking system for gated radiotherapy,' International Journal of Radiation Oncology Biology Physics, 48, 1187, (2000) https://doi.org/10.1016/S0360-3016(00)00748-3
  69. A. Schweikard, H. Shiomi and J. Adler, 'Respiration tracking in radiosurgery,' Medical Physics, 31, 2738, (2004) https://doi.org/10.1118/1.1774132
  70. A. Y. C. Fung, K. M. Ayyangar, D. Djajaputra, R. M. Nehru and A. A. Enke, 'Ultrasound-based guidance of intensitymodulated radiation therapy,' Medical Dosimetry, 31, 20, (2006) https://doi.org/10.1016/j.meddos.2005.12.011
  71. X. Artignan, M. H. P. Smitsmans, J. V. Lebesque, M. van Her, D. A. Jaffray and H. Bartelink, 'Online ultrasound image guidance for radiotherapy of prostate cancer: Impact of image acquisition on prostate displacement,' International Journal of Radiation Oncology Biology Physics, 59, 595, (2004) https://doi.org/10.1016/j.ijrobp.2004.01.043
  72. A. Y. C. Fung, C. A. Enke, K. M. Ayyangar, N. V. Raman, W. N. Zhen, R. B. Thompson, S. C. Li, R. M. Nehru and S. Pillai, 'Prostate motion and isocenter adjustment from ultrasound-based localization during delivery of radiation therapy,' International Journal of Radiation Oncology Biology Physics, 61, 984, (2005) https://doi.org/10.1016/j.ijrobp.2004.07.727
  73. D. J. Little, L. Dong, L. B. Levy, A. Chandra and D. A. Kuban, 'Use of portal images and bat ultrasonography to measure setup error and organ motion for prostate IMRT: Implications for treatment margins,' International Journal of Radiation Oncology Biology Physics, 56, 1218, (2003) https://doi.org/10.1016/S0360-3016(03)00290-6
  74. A. Chandra, L. Dong, E. Huang, D. A. Kuban, L. O'Neill, I. Rosen and A. Pollack, 'Experience of ultrasound-based daily prostate localization,' International Journal of Radiation Oncology Biology Physics, 56, 436, (2003) https://doi.org/10.1016/S0360-3016(02)04612-6
  75. S. Ahmad, M. T. Vlachaki, T. N. Teslow, C. M. Amosson, J. McGary, B. S. Teh, S. Y. Woo, E. B. Butler and W. H. Grant, 'Impact of setup uncertainty in the dosimetry of prostate and surrounding tissues in prostate cancer patients treated with Peacock/IMRT,' Medical Dosimetry, 30, 1, (2005) https://doi.org/10.1016/j.meddos.2004.10.001
  76. M. T. Vlachaki, T. N. Teslow, C. Amosson, N. W. Uy and S. Ahmad, 'IMRT versus conventional 3DCRT on prostate and normal tissue dosimetry using an endorectal balloon for prostate immobilization,' Medical Dosimetry, 30, 69, (2005) https://doi.org/10.1016/j.meddos.2005.01.002
  77. M. D. Bastasch, B. S. Teh, W. Y. Mai, J. E. McGary, W. H. Grant and E. B. Butler, 'Tolerance of endorectal balloon in 396 patients treated with intensity-modulated radiation therapy (IMRT) for prostate cancer,' American Journal of Clinical Oncology-Cancer Clinical Trials, 29, 8, (2006) https://doi.org/10.1097/01.coc.0000195099.26957.63
  78. E. N. J. T. van Lin, L. P. van der Vight, J. A. Witjes, H. J. Huisman, J. W. Leer and A. G. Visser, 'The effect of an endorectal balloon and off-line correction on the interfraction systematic and random prostate position variations: A comparative study,' International Journal of Radiation Oncology Biology Physics, 61, 278, (2005) https://doi.org/10.1016/j.ijrobp.2004.09.042
  79. R. R. Patel, N. Orton, W. A. Tome, R. Chappell and M. A. Ritter, 'Rectal dose sparing with a balloon catheter and ultrasound localization in conformal radiation therapy for prostate cancer,' Radiotherapy and Oncology, 67, 285, (2003) https://doi.org/10.1016/S0167-8140(03)00056-2
  80. I. F. Ciernik, B. G. Baumert, P. Egli, C. Glanzmann and U. M. Lutolf, 'On-line correction of beam portals in the treatment of prostate cancer using an endorectal balloon device,' Radiotherapy and Oncology, 65, 39, (2002) https://doi.org/10.1016/S0167-8140(02)00187-1
  81. S. E. Tenn, T. D. Solberg and P. M. Medin, 'Targeting accuracy of an image guided gating system for stereotactic body radiotherapy,' Physics in Medicine and Biology, 50, 5443, (2005) https://doi.org/10.1088/0031-9155/50/23/002
  82. T. Scarbrough, N. M. Golden, C. D. Fuller, P. A. Kupelian, J. Y. Ting, A. Wong and C. R. Thomas, 'Ultrasound versus seed marker prostate localization,' International Journal of Radiation Oncology Biology Physics, 63, S196, (2005) https://doi.org/10.1016/j.ijrobp.2005.07.340
  83. M. Imura, K. Yamazaki, H. Shirato, R. Onimaru,S. Ogura, M. Fujino, S. Shimizu, H. Dosaka-Akita, K. Miyasaka, T. Haradaand M. Nishimura, 'Insertion and fixation of fiducial markers for setup and tracking of lung tumors in radiotherapy,' International Journal of Radiation Oncology Biology Physics, 63, 1442, (2005) https://doi.org/10.1016/j.ijrobp.2005.04.024
  84. T. Harada, H. Shirato, S. Ogura, S. Oizumi, K. Yamazaki, S. Shimizu, R. Onimaru, K. Miyasaka, M. Nishimura and H. Dosaka-Akita, 'Real-time tumor-tracking radiation therapy for lung carcinoma by the aid of insertion of a gold marker using bronchofiberscopy,' Cancer, 95, 1720, (2002) https://doi.org/10.1002/cncr.10856
  85. H. Shirato, T. Harad, T. Harabayashi, K. Hida, H. Endo, K. Kitamura, R. Onimaru, K. Yamazaki, N. Kurauchi, T. Shimizu, N. Shinohara, M. Matsushita, H. Dosaka-Akita and K. Miyasaka, 'Feasibility of insertion/implantation of 2.0-mm-diameter gold internal fiducial markers for precise setup and real-time tumor tracking in radiotherapy,' International Journal of Radiation Oncology Biology Physics, 56, 240, (2003) https://doi.org/10.1016/S0360-3016(03)00076-2
  86. K. Kitamura, H. Shirato, S. Shimizu, N. Shinohara, H. Endo, T. Harabayashi, T. Shimizu, Y. Kodama, R. Onimaru, S. Nishioka, H. Aoyama, K. Tsuchiya and K. Miyasaka, 'Registration accuracy and possible migration of internal fiducial gold marker implanted in prostate and liver treated with real-time tumor-tracking radiation therapy (RTRT),' Radiotherapy and Oncology, 62, 275, (2002) https://doi.org/10.1016/S0167-8140(02)00017-8
  87. H. Shirato, M. Oita, K. Fujita, Y. Watanabe, K. Miyasaka, 'Feasibility of synchronization of real-time tumor-tracking radiotherapy and intensity-modulated radiotherapy from viewpoint of excessive dose from fluoroscopy,' International Journal of Radiation Oncology Biology Physics, 60, 335, (2004) https://doi.org/10.1016/j.ijrobp.2004.04.028
  88. U. Oelfke, T. Tucking, S. Nill, A. Seeber, B. Hesse, P. Huber and C. Thilmann, 'Linac-integrated kV-cone beam CT: Technical features and first applications,' Medical Dosimetry, 31, 62, (2006) https://doi.org/10.1016/j.meddos.2005.12.008
  89. D. Letourneau, J. W. Wong, M. Oldham, M. Gulam, L. Watt, D. A. Jaffray, J. H. Siewerdsen and A. A. Martinez, 'Conebeam- CT guided radiation therapy: technical implementation,' Radiotherapy and Oncology, 75, 279, (2005) https://doi.org/10.1016/j.radonc.2005.03.001
  90. D. A. Jaffray, D. G. Drake, M. Moreau, A. A. Martinez and J. W. Wong, 'A radiographic and tomographic imaging system integrated into a medical linear accelerator for localization of bone and soft-tissue targets,' International Journal of Radiation Oncology Biology Physics, 45, 773, (1999) https://doi.org/10.1016/S0360-3016(99)00118-2
  91. D. A. Jaffray and J. H. Siewerdsen, 'Cone-beam computed tomography with a flat-panel imager: Initial performance characterization,' Medical Physics, 27, 1311, (2000) https://doi.org/10.1118/1.599009
  92. D. A. Jaffray, J. H. Siewerdsen, J. W. Wong, A. A. Martinez, 'Flat-panel cone-beam computed tomography for imageguided radiation therapy,' International Journal of Radiation Oncology Biology Physics, 53, 1337, (2002) https://doi.org/10.1016/S0360-3016(02)02884-5
  93. M. Islam, T. Purdie, D. Moseley, H. Alasti, B. Norrlinger, M. Sharpe, J. Siewerdsen and D. Jaffray, 'Patient dose from kilovoltage cone beam computed tomography imaging in radiation therapy,' Medical Physics, 33, 1573, (2006) https://doi.org/10.1118/1.2198169
  94. S. Kim, 'System Including Computed Tomography Device for Image Guided Treatment,' (US Patent Application No. 60/652085 - patent in review)
  95. H.-K. Lee, D.-I. Kim, B.-Y. Choe, T.-S. Suh, T.-E. Choi, C.-J. Park, D.-Y. Jang and S. Kim, 'A preliminary study of a new concept cone beam CT system,' World Congress on Medical Physics and Biomedical Engineering, Seoul, Korea, (2006)
  96. J. Lagendijk, B. Raaymakers, U. van der Heide, M. Vulpen, I. Jurgenliemk-Schulz, J. Overweg, K. Brown, C. Bakker, A. Raaijmakers and J. Welleweerd, 'In room magnetic resonance imaging guided radiotherapy (MRIgRT),' Medical Physics, 32, 2067, (2005) https://doi.org/10.1118/1.1998294
  97. A. Raaijmakers, B. Raaymakers and J. Lagendijk, 'Dose distribution in a patient anatomy for an integrated MRI-linear accelerator system: boosting the dose around air cavities using the magnetic field,' Radiotherapy and Oncology, 76, S109, (2005) https://doi.org/10.1016/S0167-8140(05)81204-6
  98. B. Raaymakers, J. Overweg, U. Van der Heide, K. Brown, A. Raaijmakers, J. Welleweerd, C. Bakker and J. Lagendijk, 'Design of the MRI accelerator,' Radiotherapy and Oncology, 76, S109, (2005) https://doi.org/10.1016/S0167-8140(05)81203-4
  99. J. F. Dempsey, D. Benoit, J. R. Fitzsimmons, A. Haghighat, J. G. Li, D. A. Low, S. Mutic, J. R. Palta, H. E. Romeijn and G. E. Sjoden, 'A device for realtime 3D image-guided IMRT,' International Journal of Radiation Oncology Biology Physics, 63, S202, (2005) https://doi.org/10.1016/j.ijrobp.2005.07.349