• Title/Summary/Keyword: multi issues

Search Result 884, Processing Time 0.033 seconds

Seismic reliability of precast concrete frame with masonry infill wall

  • Mahdi Adibi;Roozbeh Talebkhah;Hamid Farrokh Ghatte
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The presented paper considers infill masonry walls' influence on the seismic reliability of precast concrete frames. The recent Bojnord earthquake on May 13th, 2017 in Iran (MW 5.4) illustrated that the infill masonry walls play a crucial role in the damage extent and life safety issues of inhabitants in the precast concrete buildings. The incremental dynamic analysis (IDA) approach was used to determine the fragility curves of the represented damaged precast frame. Then, by integrating site hazard and structural fragilities, the seismic reliability of the represented precast frame was evaluated in different damage limit states. Additionally, the static pushover analysis (SPA) approach was used to assess the seismic performance assessment of the precast frame. Bare and infilled frames were modeled as 2D frames employing the OpenSees software platform. The multi-strut macro-model method was employed for infill masonry simulation. Also, a relatively efficient and straightforward nonlinear model was used to simulate the nonlinear behavior of the precast beam-column joint. The outputs show that consideration of the masonry infilled wall effect in all spans of the structural frame leads to a decrease in the possibility of exceedance of specified damage limit states in the structures. In addition, variation of hazard curves for buildings with and without consideration of infilled walls leads to a decrease in the reliability of the building's frames with masonry infilled walls. Furthermore, the lack of infill walls in the first story significantly affects the precast concrete frame's seismic reliability and performance.

Bayesian Theorem-based Prediction of Success in Building Commissioning

  • Park, Borinara
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.523-526
    • /
    • 2015
  • In recent years, building commissioning has often been part of a standard delivery practice in construction, particularly in the high-performance green building market, to ensure the building is designed and constructed per owner's requirements. Commissioning, therefore, intends to provide quality assurance that buildings perform as intended by the design and often helps achieve energy savings. Commissioning, however, is not as widely adopted as its potential benefits are perceived. Owners are still skeptical of the cost-effectiveness claims by energy management and commissioning professionals. One of the issues in the current commissioning practice is that not every project is guaranteed to benefit from the commissioning services. This, coupled with its added cost, the commissioning service is not acquired with great acceptance and confidence by building owners. To overcome this issue, this paper presents a unique methodology to enhance owner's predicting capability of the degree of success of commissioning service using the Bayesian theorem. The paper analyzes a situation where a future building owner wants to use a pre-commissioning in an attempt to refine the success rate of the future commissioned building performance. The author proposes the Bayesian theorem based framework to improve the current commissioning practice where building owners are not given accurate information how much successful their projects are going to be in terms of energy savings from the commissioning service. What should be provided to the building owners who consider their buildings to be commissioned is that they need some indicators how likely their projects benefit from the commissioning process. Based on this, the owners can make better informed decisions whether or not they acquire a commissioning service.

  • PDF

NON-VALUE ADDING ACTIVITIES IN SOUTH AFRICAN CONSTRUCTION: A RESEARCH AGENDA

  • Fidelis Emuze;John Smallwood
    • International conference on construction engineering and project management
    • /
    • 2011.02a
    • /
    • pp.453-458
    • /
    • 2011
  • The construction industry's importance to nation building, economic empowerment, and contributions to global commerce cannot be over emphasised. However, poor productivity, accidents, rework, time and cost overruns, and client dissatisfaction have characterised the industry performance in a multi-dimensional way. The central issue in this particular research is the seemingly inadequate achievement of optimum performance in the construction process, either with respect to value for money for the client and the entire construction supply chain or value in terms of the utility derived from built assets in spite of efforts by government and governmental bodies such as the Construction Industry Development Board (cidb) to increase industry performance. Therefore, based upon an extensive review of related literature, the paper reports on effects and causes of non-value adding activities in the construction industry in general, and South African construction in particular. The research findings indicate that activities that can be referred to as non-value activities are not only prevalent, but they can also be held responsible for performance related issues in terms of cost, time, quality and health and safety (H&S) in construction; and the exploration of pluralism in the research methodology may result in a robust model based upon the system dynamics approach. Therefore, the study suggests that there is major scope for value optimisation in the construction process especially in terms of availability and implementation of interventions, which have not only proven successful in other industries, but are also adaptable in the construction industry context.

  • PDF

Trust in organizations: Conceptualization and Trends (조직내 신뢰: 개념화와 연구동향)

  • Jasook Koo
    • Korean Journal of Culture and Social Issue
    • /
    • v.11 no.spc
    • /
    • pp.69-83
    • /
    • 2005
  • This paper examines the diverse conceptualizations of trust and explores the multi-level factors affecting trust in organizations. Trust in organizations can be defined as a willingness to be vulnerable to the actions of others and to take risks based on the positive expectations toward the others' intentions and behaviors. The process of building and the content of trust in organizations can vary depending on the social and cultural backgrounds in which. the organizations lie. The reengineering process toward a flatter and flexible organizational structure requires the presence of trusting relationships within organizations. Networks within organizations can function as a basis and channel of trust formation. Finally, the importance of trust in efficient leadership process was discussed.

Artificial Intelligence-Based CW Radar Signal Processing Method for Improving Non-contact Heart Rate Measurement (비접촉형 심박수 측정 정확도 향상을 위한 인공지능 기반 CW 레이더 신호처리)

  • Won Yeol Yoon;Nam Kyu Kwon
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.18 no.6
    • /
    • pp.277-283
    • /
    • 2023
  • Vital signals provide essential information regarding the health status of individuals, thereby contributing to health management and medical research. Present monitoring methods, such as ECGs (Electrocardiograms) and smartwatches, demand proximity and fixed postures, which limit their applicability. To address this, Non-contact vital signal measurement methods, such as CW (Continuous-Wave) radar, have emerged as a solution. However, unwanted signal components and a stepwise processing approach lead to errors and limitations in heart rate detection. To overcome these issues, this study introduces an integrated neural network approach that combines noise removal, demodulation, and dominant-frequency detection into a unified process. The neural network employed for signal processing in this research adopts a MLP (Multi-Layer Perceptron) architecture, which analyzes the in-phase and quadrature signals collected within a specified time window, using two distinct input layers. The training of the neural network utilizes CW radar signals and reference heart rates obtained from the ECG. In the experimental evaluation, networks trained on different datasets were compared, and their performance was assessed based on loss and frequency accuracy. The proposed methodology exhibits substantial potential for achieving precise vital signals through non-contact measurements, effectively mitigating the limitations of existing methodologies.

Developing a Web-Based System for Testing Students' Physics Misconceptions (WEBSYSTEM) and its Implementation

  • Kim, Min-Kee;Choi, Jae-Hyeok;Song, Jin-Woong
    • Journal of The Korean Association For Science Education
    • /
    • v.27 no.2
    • /
    • pp.105-119
    • /
    • 2007
  • Several studies have attempted to test students' misconceptions of physics and to provide teaching strategies in order to repair them. The results from these studies have revealed that the diagnosis of students' misconception is crucial, although they often failed to grasp the practice of its implementation. In terms of being a type of methodology for science education, the Internet allows large-scale surveys and investigations to be carried out in a relatively short period of time. This paper reports the results of the development, implementation, and evaluation of a WEb-based SYStem for TEsting students' Misconceptions in physics (WEBSYSTEM) aimed at three groups (science educational researchers who study students' physics conceptions using the system as a detector, school science teachers who practice it as an instructional material, and students who benefit from it for their self-directed learning). The web-based testing system is based on a review of the instructional development strategies of ADDIE (Gustafson, Branch, 2002; Rha, Chung, 2001). Results showed that WEBSYSTEM could work effectively as a multi-purposed tool for the three target groups with a further partial revision, providing educational researchers with resourceful data to study students' misconceptions in physics. Issues of administrative strategies, reexamination of questionnaires, and international collaboration via WEBSYSTEM are discussed.

Vibrational behavior of porous composite laminated plates using four unknown integral shear deformation theory

  • Hayat Saidi;Abdelouahed Tounsi;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi;Firas Ismail Salman Al-Juboori
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.249-271
    • /
    • 2024
  • In this scientific work, an analytical solution for the dynamic analysis of cross-ply and angle-ply laminated composite plates is proposed. Due to technical issues during the manufacturing of composite materials, porosities and micro-voids can be produced within the composite material samples, which can carry on to a reduction in the density and strength of the materials. In this research, the laminated composite plates are assumed to have new distributions of porosities over the plate cross-section. The structure is modeled using a simple integral shear deformation theory in which the transverse shear deformation effect is included. The governing equations of motion are obtained employing the principle of Hamilton's. The solution is determined via Navier's approach. The Maple program is used to obtain the numerical results. In the numerical examples, the effects of geometry, ratio, modulus ratio, fiber orientation angle, number of layers and porosity parameter on the natural frequencies of symmetric and anti-symmetric laminated composite plates is presented and discussed in detail. Also, the impacts of the kinds of porosity distribution models on the natural frequencies of symmetric and anti-symmetric laminated composite plates are investigated.

International Legal Regulation for Environmental Contamination on Outer Space Activities (우주에서의 환경오염 방지를 위한 국제법적 규제)

  • Lee, Young-Jin
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.24 no.1
    • /
    • pp.153-194
    • /
    • 2009
  • The resources of outer space are for the common exploitation of mankind, and it is a common responsibility of mankind to protect the outer space environment. With the rapid development of space science and technology, and especially with the busy space activities of some major space powers, environmental contamination or space debris is steadily increasing in quantity and has brought grave potential threats and actual damage to the outer space environment and human activities in space. Especially We must mitigate and seek out a solution to remove space debris which poses a threat directly to man's exploitation and use of outer space activities in the Low Earth Orbit (LEO) and in the Geostationary Orbit (GEO), through international cooperation and agreement in the fields of space science, economics, politics and law, in order to safeguard the life and property of mankind and protect the earth's environment. While the issue of space debris has been the subject of scientific study and discussion for some time now, it has yet to be fully addressed within the context of an international legal framework. During the earlier stages of the space age, which began in the late 1950s, the focus of international lawmakers and diplomats was the establishment of basic rules which sought to define the legal nature of outer space and set out the parameters for space activities and the nature and scope of activities carried out in outer space were quite limited. Consequently, environmental issues and the risks that might arise from the generation of space debris did not receive priority attention within the context of the development international space law. In recent years, however, the world has seen dramatic advances in technology and increases in the type and number of space-related activities which are being carried out. In addition, the number of actors in this field has exploded from two highly developed States to a vast array of different States, intergovernmental and nongovernmental organizations, including private industry. Therefore, the number of artificial objects in the near-Earth space is continually increasing. As has been previously mentioned, COPUOS was the entity that created the existing five treaties, and five sets of legal Principles, which form the core of space law, and COPUOS is clearly the most appropriate entity to oversee the creation of this regulatory body for the outer space environmental problem. This idea has been proposed by various States and also at the ILA Conference in Buenos Aires. The ILA Conference in Buenos Aires produced an extensive proposal for such a regulatory regime, dealing with space debris issues in legal terms This article seeks to discuss the status of international law as it relates to outer space environmental problem and space debris and indicate a course of action which might be taken by the international community to develop a legal framework which can adequately cope with the complexity of issues that have recently been recognized. In Section Ⅱ,Ⅲ and IV of this article discuss the current status of international space law, and the extent to which some of the issues raised by earth and space environment are accounted for within the existing United Nations multilateral treaties. Section V and VI discuss the scope and nature of space debris issues as they emerged from the recent multi-year study carried out by the ILA, Scientific and Technical Subcommittee, Legal Subcommittee of the United Nations Committee on the Peaceful Uses of Outer Space ("COPUOS") as a prelude to the matters that will require the attention of international lawmakers in the future. Finally, analyzes the difficulties inherent in the future regulation and control of space debris and the activities to protect the earth's environment. and indicates a possible course of action which could well provide, at the least, a partial solution to this complex challenge.

  • PDF

Modeling & Simulation Environment for Solving Waste Problems of the Local Community using Discrete Event System Formalism (지역사회 내 쓰레기 문제 해결을 위한 이산사건시스템 형식론 기반 모델링 및 시뮬레이션 환경)

  • Choi, Changbeom;Jung, Jinho;Lyoo, Changhyun;Kim, Eun-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.29 no.1
    • /
    • pp.71-79
    • /
    • 2020
  • As the urbanization trend in modern society continues, the concentration of the population induces the urban problems in the residential area. One of the well-known issues among various urban problems is the garbage problem, which causes deterioration of the residential environment of citizens and directly affects the satisfaction of municipal administration. Such garbage problem cannot be accurately predicted by analyzing the amount of waste emitted from residential areas, but it is necessary to analyze the lifestyle and characteristics of residents living in residential areas. In this study, we propose an agent-based residential modeling and simulation environment using discrete event system formalism to analyze the garbage problem and satisfaction level according to the distribution of residents in the residential area. To model the behavior of the residents, we utilized the Atomic Model to capture the temporal behavior. Also, we used the Coupled Model to model the multi-family and the building to enhance the reusability of the simulation model. Also, this study carried out simulation modeling and simulation for a multi-family residential area. The simulation results of the multi-family housing area show that considering the characteristics of the residents gives better results compared to the simulation results without considering the characteristics.

Pipeline Structural Damage Detection Using Self-Sensing Technology and PNN-Based Pattern Recognition (자율 감지 및 확률론적 신경망 기반 패턴 인식을 이용한 배관 구조물 손상 진단 기법)

  • Lee, Chang-Gil;Park, Woong-Ki;Park, Seung-Hee
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.351-359
    • /
    • 2011
  • In a structure, damage can occur at several scales from micro-cracking to corrosion or loose bolts. This makes the identification of damage difficult with one mode of sensing. Hence, a multi-mode actuated sensing system is proposed based on a self-sensing circuit using a piezoelectric sensor. In the self sensing-based multi-mode actuated sensing, one mode provides a wide frequency-band structural response from the self-sensed impedance measurement and the other mode provides a specific frequency-induced structural wavelet response from the self-sensed guided wave measurement. In this study, an experimental study on the pipeline system is carried out to verify the effectiveness and the robustness of the proposed structural health monitoring approach. Different types of structural damage are artificially inflicted on the pipeline system. To classify the multiple types of structural damage, a supervised learning-based statistical pattern recognition is implemented by composing a two-dimensional space using the damage indices extracted from the impedance and guided wave features. For more systematic damage classification, several control parameters to determine an optimal decision boundary for the supervised learning-based pattern recognition are optimized. Finally, further research issues will be discussed for real-world implementation of the proposed approach.