DOI QR코드

DOI QR Code

Seismic reliability of precast concrete frame with masonry infill wall

  • Mahdi Adibi (Engineering Faculty, Department of Civil Engineering, University of Bojnord) ;
  • Roozbeh Talebkhah (School of Civil Engineering, College of Engineering, University of Bojnord) ;
  • Hamid Farrokh Ghatte (Civil Engineering Department, Faculty of Engineering, Antalya Bilim University)
  • Received : 2022.08.13
  • Accepted : 2023.01.13
  • Published : 2023.02.25

Abstract

The presented paper considers infill masonry walls' influence on the seismic reliability of precast concrete frames. The recent Bojnord earthquake on May 13th, 2017 in Iran (MW 5.4) illustrated that the infill masonry walls play a crucial role in the damage extent and life safety issues of inhabitants in the precast concrete buildings. The incremental dynamic analysis (IDA) approach was used to determine the fragility curves of the represented damaged precast frame. Then, by integrating site hazard and structural fragilities, the seismic reliability of the represented precast frame was evaluated in different damage limit states. Additionally, the static pushover analysis (SPA) approach was used to assess the seismic performance assessment of the precast frame. Bare and infilled frames were modeled as 2D frames employing the OpenSees software platform. The multi-strut macro-model method was employed for infill masonry simulation. Also, a relatively efficient and straightforward nonlinear model was used to simulate the nonlinear behavior of the precast beam-column joint. The outputs show that consideration of the masonry infilled wall effect in all spans of the structural frame leads to a decrease in the possibility of exceedance of specified damage limit states in the structures. In addition, variation of hazard curves for buildings with and without consideration of infilled walls leads to a decrease in the reliability of the building's frames with masonry infilled walls. Furthermore, the lack of infill walls in the first story significantly affects the precast concrete frame's seismic reliability and performance.

Keywords

References

  1. ASCE 7-10 (2010), Minimum Design Loads for Buildings and Other Structures, American Society of Civil Engineers, Reston, Virginia, USA. 
  2. ACI-318-10 (2010), Building Code Requirements for Structural Concrete and Commentary, American Concrete Institute, Farmington Hills, Michigan, USA. 
  3. Adibi, M., Marefat, M.S. and Allahvirdizadeh, R. (2018), "Nonlinear modeling of cyclic response of RC beam-column joints reinforced by plain bars", Bull. Earthq. Eng., 16(11), 5529-5556. https://doi.org/10.1007/s10518-018-0399-4. 
  4. Adibi, M., Talebkhah, R. and Yahyaabadi, A. (2019), "Simulation of cyclic response of precast concrete beam-column joints", Comput. Concrete, 24(3), 223-236. https://doi.org/10.12989/cac.2019.24.3.223. 
  5. Adibi, M., Yahyaabadi, A. and Talebkhah, R. (2021), "Seismic behavior assessment of RC precast frame damaged in Bojnord Earthquake 2017 considering soil-structure interaction effects", Amirkabir J. Civil Eng., 53(7), 19-19. https://doi.org/10.22060/ceej.2020.17608.6633. 
  6. Adibi, M., Talebkhah, R. and Yahyaabadi, A. (2021), "Nonlinear modeling of exterior beam-column joints in precast concrete buildings", J. Struct. Constr. Eng., 8(9), 117-133. https://doi.org/10.22065/jsce.2020.184234.1854. 
  7. Adibi, M. and Talebkhah, R. (2022), "Seismic performance assessment of the precast concrete buildings using FEMA P-695 methodology", Struct. Eng. Mech., 82(1), 55-67. https://doi.org/10.12989/sem.2022.82.1.055. 
  8. Adibi, M. and Talebkhah, R. (2022). "Seismic reliability of the non-code-conforming RC building due to vertical mass irregularity effect", J. Rehabil. Civil Eng., 10(4), 14-32. https://doi.org/10.22075/JRCE.2021.23630.1516. 
  9. Asteris, P.G., Cavaleri, L., Di Trapani, F. and Sarhosis, V. (2016), "A macro-modelling approach for the analysis of infilled frame structures considering the effects of openings and vertical loads", Struct. Infrastruct. Eng., 12(5), 551-566. https://doi.org/10.1080/15732479.2015.1030761. 
  10. Barbosa, A.R., Fahnestock, L.A., Fick, D.R., Gautam, D., Soti, R., Wood, R. and Rodrigues, H. (2017), "Performance of medium-to-high rise reinforced concrete frame buildings with masonry infill in the 2015 Gorkha, Nepal, earthquake", Earthq. Spectra, 33(1), 197-218. http://doi.org/10.1193/051017EQS087M. 
  11. Batalha, N., Rodrigues, H. and Varum, H. (2019), "Seismic performance of RC precast industrial buildings learning with the past earthquakes", Innov. Infrastruct. Solut., 4(1), 4. https://doi.org/10.1007/s41062-018-0191-y. 
  12. Cavaleri, L. and Di Trapani, F. (2014), "Cyclic response of masonry infilled RC frames: Experimental results and simplified modeling", Soil Dyn. Earthq. Eng., 65, 224-242. https://doi.org/10.1016/j.soildyn.2014.06.016. 
  13. Cavaleri, L. and Di Trapani, F. (2015), "Prediction of the additional shear action on frame members due to infills", Bull. Earthq. Eng., 13(5), 1425-1454. https://doi.org/10.1007/s10518-014-9668-z. 
  14. Chaulagain, H., Rodrigues, H., Spacone, E. and Varum, H. (2016), "Seismic safety assessment of existing masonry infill structures in Nepal", Earthq. Eng. Eng. Vib., 15(2), 251-268. https://doi.org/10.1007/s11803-016-0320-6. 
  15. Cosenza, E., Del Vecchio, C., Di Ludovico, M., Dolce, M., Moroni, C., Prota, A. and Renzi, E. (2018), "The Italian guidelines for seismic risk classification of constructions: Technical principles and validation", Bull. Earthq. Eng., 16(12), 5905-5935. https://doi.org/10.1007/s10518-018-0431-8. 
  16. Di Trapani, F., Bertagnoli, G., Ferrotto, M.F. and Gino, D. (2018), "Empirical equations for the direct definition of stress-strain laws for fiber-section-based macromodeling of infilled frames", J. Eng. Mech., 144(11), 04018101. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001532. 
  17. Di Trapani, F., Bolis, V., Basone, F. and Preti, M. (2020), "Seismic reliability and loss assessment of RC frame structures with traditional and innovative masonry infills", Eng. Struct., 208, 110306. https://doi.org/10.1016/j.engstruct.2020.110306. 
  18. Di Trapani, F. and Malavisi, M. (2019), "Seismic fragility assessment of infilled frames subject to mainshock/aftershock sequences using a double incremental dynamic analysis approach", Bull. Earthq. Eng., 17(1), 211-235. https://doi.org/10.1007/s10518-018-0445-2. 
  19. Di Trapani, F., Malavisi, M., Shing, P. and Cavaleri, L. (2020), "Definition of out-of-plane fragility curves for masonry infills subject to combined in-plane and out-of-plane damage", Brick and Block Masonry-From Historical to Sustainable Masonry, CRC Press. 
  20. Dolsek, M. and Fajfar, P. (2005), "Simplified non-linear seismic analysis of infilled reinforced concrete frames", Earthq. Eng. Struct. Dyn., 34(1), 49-66. http://doi.org/10.1002/eqe.411. 
  21. FEMA P695 (2009), Quantification of Building Seismic Performance Factors, Federal Emergency Management Agency, Washington, D.C., USA. 
  22. Furtado, A., Rodrigues, H., Arede, A. and Varum, H. (2015), "Influence of the in plane and out-of-plane masonry infill walls' interaction in the structural response of RC buildings", Procedia Eng., 114, 722-729. http://doi.org/10.1016/j.proeng.2015.08.016. 
  23. Furtado, A., Rodrigues, H., Arede, A. and Varum, H. (2016a), "Experimental evaluation of out-of-plane capacity of masonry infill walls", Eng. Struct., 111, 48-63. http://doi.org/10.1016/j.engstruct.2015.12.013. 
  24. Furtado, A., Rodrigues, H., Arede, A. and Varum, H. (2016b), "Simplified macro-model for infill masonry walls considering the out-of-plane behaviour", Earthq. Eng. Struct. Dyn., 45(4), 507-524. http://doi.org/10.1002/eqe.2663. 
  25. Furtado, A., Rodrigues, H., Arede, A. and Varum, H. (2017), "Modal identification of infill masonry walls with different characteristics", Eng. Struct., 145, 118-134. http://doi.org/10.1016/j.engstruct.2017.05.003. 
  26. Furtado, A., Vila-Pouca, N., Varum, H. and Arede, A. (2019), "Study of the seismic response on the infill masonry walls of a 15-storey reinforced concrete structure in Nepal", Build., 9(2), 39. https://doi.org/10.3390/buildings9020039. 
  27. Hall, J.F. (2006), "Problems encountered from the use (or misuse) of rayleigh damping", Earthq. Eng. Struct. Dyn., 35(5), 525-545. https://doi.org/10.1002/eqe.541. 
  28. HAZUS-MH MR5 (2005), Earthquake Loss Estimation Methodology Model, FEMA, Washington, D.C., USA. 
  29. Izanlu, F. and Yahyaabadi, A. (2019), "Determination of structural fragility curves of various building types for seismic vulnerability assessment in the Sarpol-e Zahab City", J. Seismol. Earthq. Eng., 20(3), 93-107. 
  30. Koutromanos, I., Stavridis, A., Shing, P.B. and Willam, K. (2011), "Numerical modeling of masonry-infilled RC frames subjected to seismic loads", Comput. Struct., 89(11-12), 1026-1037. http://doi.org/10.1016/j.compstruc.2011.01.006. 
  31. Layadi, I., Messabhia, A., Plassiard, J.P. and Olivier, P. (2020), "The effect of masonry infill walls on the reinforced concrete frames behavior under lateral load", J. Mater. Eng. Struct., 7(1), 125-140. 
  32. Mander, J.B., Priestley, M.J. and Park, R. (1988), "Theoretical stress-strain model for confined concrete", J. Struct. Eng., 114(8), 1804-1826. https://doi.org/10.1061/(ASCE)0733-9445(1988)114:8(1804). 
  33. Martinelli, E., Lima, C. and De Stefano, G. (2015), "A simplified procedure for nonlinear static analysis of masonry infilled RC frames", Eng. Struct., 101, 591-608. https://doi.org/10.1016/j.engstruct.2015.07.023. 
  34. Milanesi, R., Magenes, G., Morandi, P. and Hak, S. (2020), "The interaction between in-plane and out-of-plane seismic response of modern strong masonry infills", Brick and Block MasonryFrom Historical to Sustainable Masonry, CRC Press. 
  35. Milheiro, J., Rodrigues, H. and Arede, A. (2016), "Evaluation of the contribution of masonry infill panels on the seismic behaviour of two existing reinforced concrete buildings", KSCE J. Civil Eng., 20(4), 1365-1374. http://doi.org/10.1007/s12205-015-0112-y. 
  36. Mosalam, K.M., Ayala, G., White, R.N. and Roth, C. (1997), "Seismic fragility of LRC frames with and without masonry infill walls", J. Earthq. Eng., 1(4), 693-720.  https://doi.org/10.1080/13632469708962384
  37. Negro, P. and Colombo, A. (1997), "Irregularities induced by nonstructural masonry panels in framed buildings", Eng. Struct., 19(7), 576-585. http://doi.org/10.1016/S0141-0296(96)00115-0. 
  38. Nodehi, F. and Yahyaabadi, A. (2015), "Probabilistic seismic hazard analysis of Bojnord region by considering near-fault effects", 6th International Conference on Earthquake and Structures, Kerman, Iran. 
  39. Opensees (2016), Open System for Earthquke Engineering Simulation, Pacific Earthquake Engineering Research Center, University of Califonia, Brekely, CA, USA. 
  40. Papia, M., Cavaleri, L. and Fossetti, M. (2003), "Infilled frames: Developments in the evaluation of the stiffening effect of infills", Struct. Eng. Mech., 16(6), 675-693. https://doi.org/10.12989/sem.2003.16.6.675. 
  41. Petrini, L., Maggi, C., Priestley, M.N. and Calvi, G.M. (2008), "Experimental verification of viscous damping modeling for inelastic time history analyzes", J. Earthq. Eng., 12(S1), 125-145. http://doi.org/10.1080/13632460801925822. 
  42. Pokhrel, A., Gautam, D. and Chaulagain, H. (2019), "Effect of variation on infill masonry walls in the seismic performance of soft story RC building", Aust. J. Struct. Eng., 20(1), 1-9. https://doi.org/10.1080/13287982.2018.1546449. 
  43. Rahimi, M. and Yahyaabadi, A. (2019), "Bayesian probabilistic seismic hazard analysis with respect to near-fault effects", Asian J. Civil Eng., 20(3), 341-349. https://doi.org/10.1007/s42107-018-00109-7. 
  44. Talebkhah, R., Yahyaabadi, A.A. and Adibi, M. (2020), "Development of fragility curves for precast concrete frames comparing the methods of static pushover and incremental dynamic analysis", Sharif J. Civil Eng., 36.2(2.1), 129-140. https://doi.org/10.24200/J30.2019.51924.2436. 
  45. Uva, G., Porco, F. and Fiore, A. (2012), "Appraisal of masonry infill walls effect in the seismic response of RC framed buildings: A case study", Eng. Struct., 34, 514-526. https://doi.org/10.1016/j.engstruct.2011.08.043. 
  46. Uva, G., Raffaele, D., Porco, F. and Fiore, A. (2012), "On the role of equivalent strut models in the seismic assessment of infilled RC buildings", Eng. Struct., 42, 83-94. http://doi.org/10.1016/j.engstruct.2012.04.005. 
  47. Vamvatsikos, D. and Cornell, C.A. (2002a), "Incremental dynamic analysis", Earthq. Eng. Struct. Dyn., 31(3), 491-514. https://doi.org/10.1002/eqe.141. 
  48. Vamvatsikos, D. and Cornell, C.A. (2002b), Seismic Performance, Capacity and Reliability of Structures as Seen Through Incremental Dynamic Analysis, Stanford University Stanford, CA, USA. 
  49. Vemuri, J. and Subramaniam, K.V.L. (2020), "Seismic fragility assessment of unreinforced masonry shear walls", Advances in Structural Engineering, Springer, Singapore. 
  50. Vemuri, J., Anwar, T. and Subramaniam, K.V. (2022), "Seismic fragility assessment of load-bearing soft-brick unreinforced masonry piers", J. Saf. Sci. Resil., 3(4), 277-287. https://doi.org/10.1016/j.jnlssr.2022.05.001. 
  51. Vicente, R.S., Rodrigues, H., Varum, H., Costa, A. and da Silva, J. A.R.M. (2012), "Performance of masonry enclosure walls: lessons learned from recent earthquakes", Earthq. Eng. Eng. Vib., 11(1), 23-34. http://doi.org/10.1007/s11803-012-0095-3. 
  52. Vickers, N.J. (2017), "Animal communication: When I'm calling you, will you answer too?", Current Biol., 27(14), 713-715. http://doi.org/10.1016/j.jobe.2018.10.015. 
  53. Wang, L., Tang, Z.Y., Li, Y. and Qian, K. (2019), "Seismic behavior of masonry-infilled precast concrete frames considering effects of opening", Constr. Build. Mater., 211, 756-770. https://doi.org/10.1016/j.conbuildmat.2019.03.287. 
  54. Yahyaabadi, A., Talebkhah, R. and Adibi, M. (2022), "Development of seismic fragility curves for precast concrete frames with cast-in-situ concrete shear-walls", Earthq. Eng. Eng. Vib., 21(1), 149-167. https://doi.org/10.1007/s11803-022-2078-3. 
  55. Zhu, J., Tan, P. and Jin, J. (2015), "Fragility analysis of existing precast industrial frames using CFRP reinforcement", 2015 International conference on Applied Science and Engineering Innovation, Jinan, August.