• 제목/요약/키워드: mp-ring

검색결과 27건 처리시간 0.023초

Ab Initio Study of Mechanism of Forming Spiro-Ge-Heterocyclic Ring Compound From C2Ge=Ge: and Formaldehyde

  • Lu, Xiuhui;Li, Yongqing;Ming, Jingjing
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3690-3694
    • /
    • 2013
  • The $H_2Ge=Ge:$ and its derivatives ($X_2Ge=Ge:$, X = H, Me, F, Cl, Br, Ph, Ar${\ldots}{\ldots}$) is a new species. Its cycloaddition reactions is a new area for the study of germylene chemistry. The mechanism of the cycloaddition reaction between singlet state Cl2Ge=Ge: and formaldehyde has been investigated with CCSD(T)//MP2/$6-31G^*$ method. From the potential energy profile, it could be predicted that the reaction has only one dominant reaction pathway. The reaction rule presented is that the two reactants first form a fourmembered Ge-heterocyclic ring germylene through the [2+2] cycloaddition reaction. Because of the 4p unoccupied orbital of Ge: atom in the four-membered Ge-heterocyclic ring germylene and the ${\pi}$ orbital of formaldehyde forming a ${\pi}{\rightarrow}p$ donor-acceptor bond, the four-membered Ge-heterocyclic ring germylene further combines with formaldehyde to form an intermediate. Because the Ge: atom in intermediate hybridizes to an $sp^3$ hybrid orbital after transition state, then, intermediate isomerizes to a spiro-Ge-heterocyclic ring compound via a transition state. The research result indicates the laws of cycloaddition reaction between $H_2Ge=Ge:$ and formaldehyde, and laid the theory foundation of the cycloaddition reaction between $H_2Ge=Ge:$ and its derivatives ($X_2Ge=Ge:$, X = H, Me, F, Cl, Br, Ph, Ar${\ldots}{\ldots}$) and asymmetric ${\pi}$-bonded compounds, which is significant for the synthesis of small-ring and spiro-Ge-heterocyclic compounds. The study extends research area and enriches the research content of germylene chemistry.

절단부위에 따른 수무지 재건의 기능적 평가 (Functional Evaluation of Thumb Reconstruction according to the Level of Amputation)

  • 이광석;박종웅;서동훈;정웅교
    • Archives of Reconstructive Microsurgery
    • /
    • 제7권2호
    • /
    • pp.135-145
    • /
    • 1998
  • In 1980 Morrison and O'Brien reported their experiences about the reconstruction of amputated thumb using wrap-around neurovascular free flap from the great toe with a nonvascularized iliac bone graft. From then it has been considered to be a good reconstructive procedure for the amputated thumb, but it's indication has been limited distal to the metacarpophalangeal(MP) joint. We have performed 37 cases of wrap-around free flap from the great toe for the reconstruction of thumb amputated at distal or proximal to the MP joint and investigated their functional results according to the level of amputation. Level of amputation was distal to the MP joint in 25 cases and proximal to it in 12 cases. Pinching and grasping power, two point discrimination and the amount of opposition to the other fingers were compared to the uninjured hand. Pinching and grasping power were not significantly different according to the level of amputation but the amount of two point discrimination was significantly high in the cases amputated proximal to the MP joint. The opposition of reconstructed thumb to the other fingers was completely possible in all cases amputated distal to the MP joint. In 12 cases amputated proximal to the MP joint of the thumb, opposition was completely possible in 6 cases in which the iliac bone block was fixated in the position of $30^{\circ}$ flexion and $45^{\circ}$ internal rotation but in 6 cases in the fixation of $30^{\circ}$ flexion and $30^{\circ}$ internal rotation, the opposition of reconstructed thumb to the ring and little fingers were impossible in 5 cases and only to the little finger in 1 case. In this study, we concluded that even if amputation proximal to the MP joint, it is no more contraindication of the wrap-around free flap procedure for thumb reconstruction, however in these cases we recommend iliac bone block fixation in the position of $30^{\circ}$ flexion and $45^{\circ}$ infernal rotation for the better functional outcome.

  • PDF

The Modification of Exocyclic Ketone on Methyl(Pyro) pheophorbide-a and Influence with Visible Spectra

  • Wang, Jin-Jun;Han, Guang-Fan;Shim, Young-Key
    • Journal of Photoscience
    • /
    • 제8권1호
    • /
    • pp.23-25
    • /
    • 2001
  • The methyl pheophorbide-a (MP-a) and methyl pyropheophorbide-a (MPP-a) were modified by reaction of exocyclic ketone in E-ring with nucleophilic reagent and several chlorin derivatives were synthesized. The change of the structure in E-ring served an expanding conjugation region and introduction of electron-withdrawing group, which strongly influenced the visible spectra. The Qy bands of synthesized compounds were affected by the substituents on the Qy axis(N$\sub$21/-N$\sub$23/).

  • PDF

Theoretical Study on the Reaction Mechanism of Azacyclopropenylidene with Epoxypropane: An Insertion Process

  • Tan, Xiaojun;Wang, Weihua;Li, Ping
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권9호
    • /
    • pp.2717-2722
    • /
    • 2014
  • The reaction mechanism between azacyclopropenylidene and epoxypropane has been systematically investigated employing the second-order M${\o}$ller-Plesset perturbation theory (MP2) method to better understand the reactivity of azacyclopropenylidene with four-membered ring compound epoxypropane. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. It was found that for the first step of this reaction, azacyclopropenylidene can insert into epoxypropane at its C-O or C-C bond to form spiro intermediate IM. It is easier for the azacyclopropenylidene to insert into the C-O bond than the C-C bond. Through the ring-opened step at the C-C bond of azacyclopropenylidene fragment, IM can transfer to product P1, which is named as pathway (1). On the other hand, through the H-transferred step and subsequent ring-opened step at the C-N bond of azacyclopropenylidene fragment, IM can convert to product P2, which is named as pathway (2). From the thermodynamics viewpoint, the P2 characterized by an allene is the dominating product. From the kinetic viewpoint, the pathway (1) of formation to P1 is primary.

Geometries and Relative Stabilities of AlN Four-Membered-Ring Compound Isomers: Ab initio Study

  • Park, Sung-Soo;Lee, Kee-Hag;Suh, Young-Sun;Lee, Chang-Hoon;Luthi, Hans P.
    • Bulletin of the Korean Chemical Society
    • /
    • 제23권2호
    • /
    • pp.241-244
    • /
    • 2002
  • Using ab initio method, we have studied the structural stabilities, the electronic structures and properties between the two isomers with $C_{2h}$ and $C_{2v}$ symmetry of AlN four-membered-ring single precursors $[Me_2AlNHR]_2$ (R = Me, $^iPr$, and $^iBu$). In the viewpoint of bond lengths in optimized structures, the N-C bonds are considerably affected by the change of the R groups bonded to nitrogen, but the bonding characters of the Al-N and Al-C bonds are little affected. Also the structural stabilities between the two isomers with $C_{2h}$ and $C_{2v}$ symmetry by using Hartree-Fock (HF) and the second order Moeller-Pleset (MP2) calculations agree well with the experimental results for the relative stability of bis(dimethyl- m-isopropylamido-aluminum) (BDPA) and bis(dimethyl- m-t-butylamido-aluminum) (BDBA), while the semiempirical AM1 and PM3 calculations for BDPA were reverse. Thus, our results may aid in designing an optimum precursor for a given process by explaining the experimental results through the elimination of the R groups bonded to nitrogen.

Theoretical Study on the Mechanism of the Addition Reaction between Cyclopropenylidene and Formaldehyde

  • Tan, Xiaojun;Li, Zhen;Sun, Qiao;Li, Ping;Wang, Weihua
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권6호
    • /
    • pp.1934-1938
    • /
    • 2012
  • The reaction mechanism between cyclopropenylidene and formaldehyde has been systematically investigated employing the MP2/6-311+$G^*$ level of theory to better understand the cyclopropenylidene reactivity with carbonyl compound. Geometry optimization, vibrational analysis, and energy property for the involved stationary points on the potential energy surface have been calculated. Energies of all the species are further corrected by the CCSD(T)/6-311+$G^*$ single-point calculations. It was found that one important reaction intermediate (INTa) has been located firstly $via$ a transition state (TSa). After that, the common intermediate (INTb) for the two pathways (1) and (2) has been formed $via$ TSb. At last, two different products possessing three- and four-membered ring characters have been obtained through two possible reaction pathways. In the reaction pathway (1), a three-membered ring alkyne compound has been obtained. As for the reaction pathway (2), it is the formation of the four-membered ring conjugated diene compound. The energy barrier of the ratedetermining step of pathway (1) is lower than that of the pathway (2), and the ultima product of pathway (2) is more stable than that of the pathway (1).

Study of Generalized Derivations in Rings with Involution

  • Mozumder, Muzibur Rahman;Abbasi, Adnan;Dar, Nadeem Ahmad
    • Kyungpook Mathematical Journal
    • /
    • 제59권1호
    • /
    • pp.1-11
    • /
    • 2019
  • Let R be a prime ring with involution of the second kind and centre Z(R). Suppose R admits a generalized derivation $F:R{\rightarrow}R$ associated with a derivation $d:R{\rightarrow}R$. The purpose of this paper is to study the commutativity of a prime ring R satisfying any one of the following identities: (i) $F(x){\circ}x^*{\in}Z(R)$ (ii) $F([x,x^*]){\pm}x{\circ}x^*{\in}Z(R)$ (iii) $F(x{\circ}x^*){\pm}[x,x^*]{\in}Z(R)$ (iv) $F(x){\circ}d(x^*){\pm}x{\circ}x^*{\in}Z(R)$ (v) $[F(x),d(x^*)]{\pm}x{\circ}x^*{\in}Z(R)$ (vi) $F(x){\pm}x{\circ}x^*{\in}Z(R)$ (vii) $F(x){\pm}[x,x^*]{\in}Z(R)$ (viii) $[F(x),x^*]{\mp}F(x){\circ}x^*{\in}Z(R)$ (ix) $F(x{\circ}x^*){\in}Z(R)$ for all $x{\in}R$.

홍국Monascus purpureus에서 진균 PKS-NRPS 하이브리드 유전자의 발현 유도를 통한 미지 polyene 화합물의 생성 (Production of a hypothetical polyene substance by activating a cryptic fungal PKS-NRPS hybrid gene in Monascus purpureus)

  • 서재원;발라크리슈난 비지누;임윤지;이도원;최정주;박시형;권형진
    • Journal of Applied Biological Chemistry
    • /
    • 제61권1호
    • /
    • pp.83-91
    • /
    • 2018
  • 박테리아와 진균의 유전체 정보 탐색을 통하여 이차대사 생합성을 지정하는 다수의 잠재 유전자군을 찾을 수 있으며, 유전체 정보를 기반으로 특정 유전자의 발현을 활성화하여 잠재 유전자군의 생성물을 추론하고, 해당 물질의 생물학적 기능을 연구하는 것이 가능하다. 동아시아 지역에서 잘 알려진 식용 사상진균 홍국에 대하여 몇 몇 유전체 정보가 공개되어있으며, 본 연구에서는 Monascus purpureus ${\Delta}MpPKS5$ 균주에서 polyketide synthase-nonribosomal peptide synthase 유전자 Mpfus1 상단에 Aspergillus gpdA 프로모터를 삽입하는 방식으로 이 유전자의 발현을 활성화하였다. Mpfus1 유전자군은 2-pyrrolidone/conjugated polyene 구조를 갖는 물질의 생합성 유전자군들과 높은 유사성을 보이며, 이들 화합물 그룹에서 진균 독소인 fusarin이 잘 알려져 있다. ${\Delta}MpPKS5$ 균주는 홍국 azaphilone 색소 생산 능력이 소실된 균주이며 색소 및 자외선 흡수 특성을 보이는 화합물들의 동정에 적절한 균주이다. Mpfus1 활성화는 균사체가 노란색을 띠도록 유도하며, 균사체의 methanol 추출액은 365 nm에서 최대 흡광도를 보임을 확인할 수 있었다. 해당 추출액의 HPLC 분석을 통하여 다수의 화합물들이 포함되어 있음을 확인할 수 있었으며 이를 통하여 MpFus1 효소의 생성물이 대사적, 화학적으로 불안정함을 추론할 수 있다. Mpfus1 활성화 균주 추출물을 LC-MS로 분석하여 MpFus1 생성물의 구조를 유추하여 Mpfus1 유전자군이 fusarin의 탈메틸 유사체 생합성을 지정하는 것으로 제안할 수 있었다. 본 연구는 홍국 균주에서 유전체 기반-미지 화합물 발굴 연구의 예를 제시하고 홍국 균주에서 새로운 생리활성의 동정 가능성을 시사하여 준다.

Generalized Inverses and Solutions to Equations in Rings with Involution

  • Yue Sui;Junchao Wei
    • Kyungpook Mathematical Journal
    • /
    • 제64권1호
    • /
    • pp.15-30
    • /
    • 2024
  • In this paper, we focus on partial isometry elements and strongly EP elements on a ring. We construct characterizing equations such that an element which is both group invertible and MP-invertible, is a partial isometry element, or is strongly EP, exactly when these equations have a solution in a given set. In particular, an element a ∈ R# ∩ R is a partial isometry element if and only if the equation x = x(a)*a has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. An element a ∈ R#∩R is a strongly EP element if and only if the equation (a)*xa = xaa has at least one solution in {a, a#, a, a*, (a#)*, (a)*}. These characterizations extend many well-known results.

Theoretical Studies of the Gas-Phase Identity Nucleophilic Substitution Reactions of Cyclopentadienyl Halides

  • Lee, Ik-Choon;Li, Hong-Guang;Kim, Chang-Kon;Lee, Bon-Su;Kim, Chan-Kyung;Lee, Hai-Whang
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권5호
    • /
    • pp.583-592
    • /
    • 2003
  • The gas phase identity nucleophilic substitution reactions of halide anions (X = F, Cl, Br) with cyclopentadienyl halides (1) are investigated at the B3LYP/6-311+G**, MP2/6-311+G** and G2(+)MP2 levels involving five reaction pathways: σ-attack $S_N2$, β-$S_N$2'-syn, β-$S_N$2'-anti, γ-$S_N$2'-syn and γ-$S_N$2'-anti paths. In addition, the halide exchange reactions at the saturated analogue, cyclopentyl halides (2), and the monohapto circumambulatory halide rearrangements in 1 are also studied at the same three levels of theory. In the σ-attack $S_N2$ transition state for 1 weak positive charge develops in the ring with X = F while negative charge develops with X = Cl and Br leading to a higher energy barrier with X = F but to lower energy barriers with X = Cl and Br than for the corresponding reactions of 2. The π-attack β-$S_N$2' transition states are stabilized by the strong $n_C-{\pi}^{*}_{C=C}$ charge transfer interactions, whereas the π-attack γ-$S_N$2' transition states are stabilized by the strong $n_C-{\sigma}^{*}_{C-X}$ interactions. For all types of reaction paths, the energy barriers are lower with X = F than Cl and Br due to the greater bond energy gain in the partial C-X bond formation with X = F. The β-$S_N$2' paths are favored over the γ-$S_N$2' paths only with X = F and the reverse holds with X = Cl and Br. The σ-attack $S_N2$ reaction provides the lowest energy barrier with X = Cl and Br, but that with X = F is the highest energy barrier path. Activation energies for the circumambulatory rearrangement processes are much higher (by more than 18 kcal $mol^{-1}$) than those for the corresponding $S_N2$ reaction path. Overall the gas-phase halide exchanges are predicted to proceed by the σ-attack $S_N2$ path with X = Cl and Br but by the β-$S_N$2'-anti path with X = F. The barriers to the gas-phase halide exchanges increase in the order X = F < Br < Cl, which is the same as that found for the gas-phase identity methyl transfer reactions.