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Abstract. Let R be a prime ring with involution of the second kind and centre Z(R).

Suppose R admits a generalized derivation F : R→ R associated with a derivation d : R→
R. The purpose of this paper is to study the commutativity of a prime ring R satisfying

any one of the following identities: (i) F (x)◦x∗ ∈ Z(R) (ii) F ([x, x∗])±x◦x∗ ∈ Z(R) (iii)

F (x◦x∗)± [x, x∗] ∈ Z(R) (iv) F (x)◦d(x∗)±x◦x∗ ∈ Z(R) (v) [F (x), d(x∗)]±x◦x∗ ∈ Z(R)

(vi) F (x)± x ◦ x∗ ∈ Z(R) (vii) F (x)± [x, x∗] ∈ Z(R) (viii) [F (x), x∗]∓ F (x) ◦ x∗ ∈ Z(R)

(ix) F (x ◦ x∗) ∈ Z(R) for all x ∈ R.

1. Introduction

Throughout this paper R will represent a prime ring with center Z(R). An
additive mapping ∗ : R→ R is called an involution if ∗ is an anti-automorphism of
order 2; that is, (x∗)∗ = x for all x ∈ R. An element x in a ring with involution is
said to be hermitian if x∗ = x and skew-hermitian if x∗ = −x. The sets of hermitian
and skew-hermitian elements of R will be denoted by H(R) and S(R), respectively.
A ring equipped with an involution ∗ is known as ring with involution or ∗-ring. If
char(R) 6= 2, involution is said to be of the first kind if Z(R) ⊆ H(R), otherwise it
is said to be of the second kind. In the later case, S(R) ∩ Z(R) 6= (0). A ring R is
said to be normal if xx∗ = x∗x for all x ∈ R. An example is the ring of quaternions.
A description of such rings can be found in [12], where further references can be
found.

A derivation on R is an additive mapping d : R → R such that d(xy) =
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d(x)y + xd(y) for all x, y ∈ R. Following Bresar [9], an additive mapping F : R →
R is called a generalized derivation if there exists a derivation d : R → R such
that F (xy) = F (x)y + xd(y) for all x, y ∈ R. Basic examples are derivations and
generalized inner derivations i.e., maps of type x 7→ ax + xb for some a, b ∈ R. A
map f : R → R is said to be centralizing on R if [f(x), x] ∈ Z(R) for all x ∈ R.
In a special case, when [f(x), x] = 0 holds for all x ∈ R, a map f is said to be
commuting on R. The study of centralizing and commuting mappings on prime
rings was initiated by the result of Posner [16], which states that the existence of
a nonzero centralizing derivation on a prime ring implies that the ring has to be
commutative. Through the years, a lot of work has been done in this context by a
number of authors (see, for example, [1, 5, 7, 8, 13, 17] and references therein).

Very recently in many papers the additive mappings like derivations, generalized
derivations have been studied in the setting of rings with involution and in fact it was
seen that there is a close connection between these mappings and the commutativity
of the ring R. For instance in [2], it is proved that let R be a prime ring with
involution ∗ such that char(R) 6= 2. Let d be a nonzero derivation of R such that
[d(x), x∗] ∈ Z(R) for all x ∈ R and d(S(R)∩Z(R)) 6= (0). Then R is commutative.
Many other results in this direction can be found in [3, 4, 10, 15]. The goal of
the present paper is to continue this line of investigation by considering certain
identities involving Jordan product in the setting of generalized derivations.

2. Main Results

We begin our investigation with the following lemmas, which are essential to
prove our main results.

Lemma 2.1.([15]) Let R be a prime ring with involution ′∗′ of the second kind.
Then [x, x∗] ∈ Z(R) for all x ∈ R if and only if R is commutative.

Lemma 2.2.([15]) Let R be a prime ring with involution ′∗′ of the second kind.
Then x ◦ x∗ ∈ Z(R) for all x ∈ R if and only if R is commutative.

Theorem 2.3. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a generalized derivation F : R → R associated with
a derivation d : R → R, such that F (x) ◦ x∗ ∈ Z(R) for all x ∈ R. Then R is
commutative.

Proof. By the given hypothesis, we have

(2.1) F (x) ◦ x∗ ∈ Z(R) for all x ∈ R.

A Linearization of (2.1) yields that

F (x) ◦ y∗ + F (y) ◦ x∗ ∈ Z(R) for all x, y ∈ R.

This can be further written as

(2.2) [F (x) ◦ y∗, r] + [F (y) ◦ x∗, r] = 0 for all x, y, r ∈ R.
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Replacing y by hy where h ∈ H(R) ∩ Z(R), we get

[F (x) ◦ (hy)∗, r] + [F (hy) ◦ x∗, r] = 0 for all x, y, r ∈ R.

On solving, we obtain

[F (x) ◦ y∗, r]h+ [F (y) ◦ x∗, r]h+ [y ◦ x∗, r]d(h) = 0 for all x, y, r ∈ R

and h ∈ H(R) ∩Z(R). Using (2.2), we get [y ◦ x∗, r]d(h) = 0 for all x, y, r ∈ R and
h ∈ H(R) ∩ Z(R). Using the primeness of R we have either [y ◦ x∗, r] = 0 for all
x, y, r ∈ R or d(h) = 0 for all h ∈ H(R)∩Z(R). First if we consider [y◦x∗, r] = 0 for
all x, y, r ∈ R. Replacing y by x we get [x ◦ x∗, r] = 0 for all x, r ∈ R. Thus in view
of Lemma 2.2, we get R is commutative. Now consider the second case d(h) = 0
for all h ∈ H(R) ∩ Z(R). This intern implies d(k) = 0 for all k ∈ S(R) ∩ Z(R) and
hence d(z) = 0 for all z ∈ Z(R). Replacing y by ky where k ∈ S(R)∩Z(R) in (2.2)
and using d(z) = 0 for all z ∈ Z(R), We obtain

−[F (x) ◦ y∗, r]k + [F (y) ◦ x∗, r] = 0 for all x, y, r ∈ R and k ∈ S(R) ∩ Z(R).

Using (2.2) in the previous equation, we get 2[F (y)◦x∗, r]k = 0 for all x, y, r ∈ R and
k ∈ S(R)∩Z(R). Since char(R) 6= 2, we have [F (y)◦x∗, r]k = 0 for all x, y, r ∈ R and
k ∈ S(R)∩Z(R). Now using the primeness and the fact that S(R)∩Z(R) 6= (0), we
have [F (y)◦x∗, r] = 0 for all x, y, r ∈ R. That is, [F (y)◦x, r] = 0 for all x, y, r ∈ R.
Taking x = z where z ∈ Z(R), we get [2F (x)z, r] = 0 for all x, r ∈ R and z ∈ Z(R).
Since char(R) 6= 2, we get [F (x)z, r] = 0 for all x, r ∈ R and z ∈ Z(R). Further
since S(R) ∩ Z(R) 6= (0) and using the primeness of R, we have [F (y), r] = 0 for
all y, r ∈ R. Replace y by r, we get [F (r), r] = 0 for all r ∈ R. Thus in view of [18,
Theorem 3.1], R is commutative. 2

Theorem 2.4. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a generalized derivation F : R → R associated with a
derivation d : R → R, such that F ([x, x∗]) ± x ◦ x∗ ∈ Z(R) for all x ∈ R. Then R
is commutative.

Proof. We first consider the case

(2.3) F ([x, x∗]) + x ◦ x∗ ∈ Z(R) for all x ∈ R.

If F is zero, then we get x◦x∗ ∈ Z(R). Then by Lemma 2.2, we getR is commutative.
Now consider F is non zero. Linearizing (2.3), we get

(2.4) F ([x, y∗]) + F ([y, x∗]) + x ◦ y∗ + y ◦ x∗ ∈ Z(R) for all x, y ∈ R.

This can be further written as

[F ([x, y∗]), r] + [F ([y, x∗]), r] + [x ◦ y∗, r] + [y ◦ x∗, r] = 0 for all x, y, r ∈ R.

Replacing y by hy where h ∈ H(R) ∩ Z(R), we have

[F ([x, y∗]h), r] + [F ([y, x∗]h), r] + [x ◦ y∗, r]h+ [y ◦ x∗, r]h = 0
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for all x, y, r ∈ R and h ∈ H(R) ∩ Z(R). This further implies that

(2.5) [F ([x, y∗]), r]h+ [[x, y∗], r]d(h) + [F ([y, x∗]), r]h+ [[y, x∗], r]d(h) + [x ◦ y∗, r]h

+[y ◦ x∗, r]h = 0 for all x, y, r ∈ R and h ∈ H(R) ∩ Z(R). Using (2.4) in (2.5), we
get ([[x, y∗], r] + [[y, x∗], r])d(h) = 0 for all x, y, r ∈ R and h ∈ H(R) ∩ Z(R). Using
the primeness of R we have either ([[x, y∗], r] + [[y, x∗], r]) = 0 for all x, y, r ∈ R or
d(h) = 0 for all h ∈ H(R) ∩ Z(R). If we consider ([[x, y∗], r] + [[y, x∗], r]) = 0 for
all x, y, r ∈ R. This implies that [x, y∗] + [y, x∗] ∈ Z(R) for all x, y ∈ R. Replacing
y by x we get [x, x∗] ∈ Z(R) for all x ∈ R. Thus in view of Lemma 2.1, we get
R is commutative. Now suppose that d(h) = 0 for all h ∈ H(R) ∩ Z(R). This
further implies that d(z) = 0 for all z ∈ Z(R). Replacing y by ky in (2.4) where
k ∈ S(R) ∩ Z(R), we get

−F ([x, y∗]k) + F ([y, x∗]k)− (x ◦ y∗)k + (y ◦ x∗)k ∈ Z(R) for all x, y ∈ R

and k ∈ S(R) ∩ Z(R). This further implies that

−F ([x, y∗])k − [x, y∗]d(k) + F ([y, x∗])k + [y, x∗]d(k)− (x ◦ y∗)k + (y ◦ x∗)k ∈ Z(R)

for all x, y ∈ R and k ∈ S(R) ∩ Z(R). Using (2.4) and the fact that d(z) = 0
for all z ∈ Z(R), we get (F ([y, x∗]) + y ◦ x∗)k ∈ Z(R) for all x, y ∈ R and k ∈
S(R) ∩ Z(R). Now using the primeness and the fact that S(R) ∩ Z(R) 6= (0), we
obtain (F ([y, x∗]) + y ◦ x∗) ∈ Z(R) for all x, y ∈ R. Replace x by x∗, we get
(F ([y, x]) + y ◦ x) ∈ Z(R) for all x, y ∈ R. Taking y = x, we get x2 ∈ Z(R)
for all x ∈ R. Replacing x by x + y and using x2 ∈ Z(R) for all x ∈ R, we get
xy + yx ∈ Z(R) for all x, y ∈ R. This can be further written as [xy + yx, r] = 0 for
all x, y, r ∈ R. Replace y by z where z ∈ Z(R), we get 2[x, r]z = 0 for all x, r ∈ R
and z ∈ Z(R). Finally using the facts that char(R) 6= 2, S(R) ∩ Z(R) 6= (0) and
the primeness of R, we obtain R is commutative.
The second case can be proved in a similar manner with necessary variations. 2

Theorem 2.5. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a generalized derivation F : R → R associated with a
derivation d : R → R, such that F (x ◦ x∗) ± [x, x∗] ∈ Z(R) for all x ∈ R. Then R
is commutative.

Proof. We first consider the positive sign case. If F is zero then we have [x, x∗] ∈
Z(R) for all x ∈ R. Thus in view of Lemma 2.1, we get R is commutative. If F is
nonzero then we have

(2.6) F (x ◦ x∗) + [x, x∗] ∈ Z(R) for all x ∈ R.

Linearizing (2.6), we get

(2.7) F (x ◦ y∗) + F (y ◦ x∗) + [x, y∗] + [y, x∗] ∈ Z(R) for all x, y ∈ R.
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Replacing y by hy where h ∈ H(R) ∩ Z(R) and using (2.7), we get

(x ◦ y∗ + y ◦ x∗)d(h) ∈ Z(R) for all x, y ∈ Z(R) and h ∈ H(R) ∩ Z(R).

Now using the primeness of R, we have (x ◦ y∗ + y ◦ x∗) ∈ Z(R) for all x, y ∈ R
or d(h) = 0 for all h ∈ H(R) ∩ Z(R). Replace y by x, we get x ◦ x∗ ∈ Z(R)
for all x ∈ R. Thus by Lemma 2.2, we get R is commutative. Now consider
d(h) = 0 for all h ∈ H(R) ∩ Z(R). This further implies that d(z) = 0 for all
z ∈ Z(R). Replacing y by ky in (2.7) where k ∈ S(R) ∩ Z(R) and using (2.7),
we have 2(F (y ◦ x∗) + [y, x∗])k ∈ Z(R) for all x, y ∈ R and k ∈ S(R) ∩ Z(R).
This further implies that F (y ◦ x∗) + [y, x∗] ∈ Z(R) for all x, y ∈ R. Replacing
x by x∗, we get F (y ◦ x) + [y, x] ∈ Z(R) for all x, y ∈ R. Taking y = x, we get
F (x2) ∈ Z(R) for all x ∈ R. Linearizing this and using F (x2) ∈ Z(R) for all x ∈ R,
we get F (x ◦ y) ∈ Z(R) for all x, y ∈ R. Replacing y by z, where z ∈ Z(R) we
get 2F (xz) ∈ Z(R) for all x ∈ R and z ∈ Z(R). This can be further written as
2[F (xz), r] = 0 for all x, r ∈ R and z ∈ Z(R). Since char(R) 6= 2 this implies that
[F (xz), r] = 0 for all x, r ∈ R and z ∈ Z(R). Since d(z) = 0 for all z ∈ Z(R),
we finally arrive at [F (x), r]z = 0 for all x, r ∈ R and z ∈ Z(R). Now using the
primeness and the fact that S(R)∩Z(R) 6= (0) we have [F (x), r] = 0 for all x, r ∈ R.
Replace r by x we get [F (x), x] = 0 for all x ∈ R. Then by [18, Theorem 3.1], we
get R is commutative. Following the same steps, we get R is commutative in the
second case as well. 2

Theorem 2.6. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a generalized derivation F : R → R associated with a
derivation d : R → R, such that F (x) ◦ d(x∗) ± x ◦ x∗ ∈ Z(R) for all x ∈ R. Then
R is commutative.

Proof. We first consider the case

(2.8) F (x) ◦ d(x∗) + x ◦ x∗ ∈ Z(R) for all x ∈ Z(R).

If either F or d or both are zero then we get x ◦ x∗ ∈ Z(R) for all x ∈ Z(R). Then
by Lemma 2.2, we get R is commutative. Now consider the case in which both F
and d are nonzero. Linearizing (2.8), we get

(2.9) F (x) ◦ d(y∗) + F (y) ◦ d(x∗) + x ◦ y∗ + y ◦ x∗ ∈ Z(R) for all x, y ∈ R.

Replacing y by hy where h ∈ H(R) ∩ Z(R) and using (2.9), we get

(F (x) ◦ y∗ + y ◦ d(x∗))d(h) ∈ Z(R) for all x, y ∈ R and h ∈ H(R) ∩ Z(R).

Using the primeness condition, we get either F (x) ◦ y∗ + y ◦ d(x∗) ∈ Z(R) for all
x, y ∈ R or d(h) = 0 for all h ∈ H(R)∩Z(R). First consider F (x) ◦ y∗+ y ◦ d(x∗) ∈
Z(R) for all x, y ∈ R. This can be further written as

(2.10) [F (x) ◦ y∗, r] + [y ◦ d(x∗), r] = 0 for all x, y, r ∈ R.
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Replacing y by ky where k ∈ S(R)∩Z(R) and using (2.10), we get 2[y◦d(x∗), r]k = 0
for all x, y, r ∈ R and k ∈ S(R) ∩ Z(R). Using the primeness and the facts that
char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), we get [y ◦ d(x∗), r] = 0 for all x, y, r ∈ R.
Replacing x by x∗ we have [y◦d(x), r] = 0 for all x, y, r ∈ R. Replacing y by z where
z ∈ Z(R), we get 2[d(x), r]z = 0 for all x, r ∈ R and z ∈ Z(R). Since char(R) 6= 2
and S(R) ∩ Z(R) 6= (0), this implies that [d(x), r] = 0 for all x, r ∈ R. Then by
posner’s result [16], we get R is commutative. Now we consider the case d(h) = 0
for all h ∈ H(R) ∩ Z(R). This implies that d(z) = 0 for all z ∈ Z(R). Replacing y
by ky in (2.9) where k ∈ S(R) ∩ Z(R) and using (2.9), we obtain

(2.11) 2(F (y) ◦ d(x∗) + y ◦x∗)k ∈ Z(R) for all x, y ∈ R and k ∈ S(R)∩Z(R).

This further implies that F (y) ◦ d(x∗) + y ◦ x∗ ∈ Z(R) for all x, y ∈ R. That is,
F (y) ◦ d(x) + y ◦ x ∈ Z(R) for all x, y ∈ R. Taking x = z where z ∈ Z(R) and
using d(z) = 0 for all z ∈ Z(R), we get 2yz ∈ Z(R) for all y ∈ R and z ∈ Z(R).
Since char(R) 6= 2, we get that yz ∈ Z(R) for all y ∈ R and z ∈ Z(R). This can
be written as [yz, r] = 0 for all y, r ∈ R and z ∈ Z(R). This further implies that
[y, r] = 0 for all y, r ∈ R. That is, R is commutative.

Similarly we can prove the second part. 2

Theorem 2.7. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a generalized derivation F : R → R associated with a
derivation d : R → R, such that [F (x), d(x∗)]± x ◦ x∗ ∈ Z(R) for all x ∈ R. Then
R is commutative.

Proof. The proof is on the similar lines as in the above theorem. 2

Theorem 2.8. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a generalized derivation F : R → R associated with a
derivation d : R → R, such that F (x) ± x ◦ x∗ ∈ Z(R) for all x ∈ R. Then R is
commutative.

Proof. we first consider the case

(2.12) F (x) + x ◦ x∗ ∈ Z(R) for all x ∈ R.

If F is zero then we have x ◦ x∗ ∈ Z(R) for all x ∈ R. Then by Lemma 2.2, we get
R is commutative. Consider F is nonzero. Linearizing (2.12), we get

(2.13) x ◦ y∗ + y ◦ x∗ ∈ Z(R) for all x, y ∈ R.

Replacing y by ky where k ∈ S(R) ∩ Z(R) and using (2.13), we get (y ◦ x∗)k ∈
Z(R) for all x, y ∈ R and k ∈ S(R) ∩ Z(R). Using primeness and the fact that
S(R) ∩ Z(R) 6= (0), we have y ◦ x∗ ∈ Z(R) for all x, y ∈ R. Taking y = x, we get
x ◦ x∗ ∈ Z(R) for all x ∈ R. Thus in view of Lemma 2.2, we get R is commutative.

Similarly we can prove the other case. 2

On similar lines we can prove the following result.
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Theorem 2.9. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a generalized derivation F : R → R associated with a
derivation d : R → R, such that F (x) ± [x, x∗] ∈ Z(R) for all x ∈ R. Then R is
commutative.

Theorem 2.10. Let R be a prime ring with involution of the second kind such that
char(R) 6= 2. If R admits a generalized derivation F : R → R associated with a
derivation d : R→ R, such that [F (x), x∗]∓ F (x) ◦ x∗ ∈ Z(R) for all x ∈ R. Then
R is commutative.

Proof. We first consider the case

(2.14) [F (x), x∗]− F (x) ◦ x∗ ∈ Z(R) for all x ∈ R.

Linearizing (2.14), we get

(2.15) [F (x), y∗] + [F (y), x∗]−F (x)◦y∗−F (y)◦x∗ ∈ Z(R) for all x, y ∈ Z(R).

Replacing y by hy where h ∈ H(R) ∩ Z(R) and using (2.15), we get

([y, x∗]− y ◦ x∗)d(h) ∈ Z(R) for all x, y ∈ R and h ∈ H(R) ∩ Z(R).

Using the primeness condition we have [y, x∗] − y ◦ x∗ ∈ Z(R) for all x, y ∈ R or
d(h) = 0 for all h ∈ H(R) ∩ Z(R). First suppose [y, x∗] − y ◦ x∗ ∈ Z(R) for all
x, y ∈ R. This further implies that [y, x]− y ◦ x ∈ Z(R) for all x, y ∈ R. Replacing
y by x we get x2 ∈ Z(R) for all x ∈ R. Replacing x by x+y, we obtain x◦y ∈ Z(R)
for all x, y ∈ R. That is, [x ◦ y, r] = 0 for all x, y, r ∈ R. Taking y = z, where
z ∈ Z(R), we get 2[x, r]z = 0 for all x, r ∈ R and z ∈ Z(R). Since char(R) 6= 2,
S(R)∩Z(R) 6= (0) and using the primeness of R, we have [x, r] = 0 for all x, r ∈ R.
This implies that R is commutative. Now we consider the case d(h) = 0 for all
h ∈ H(R) ∩ Z(R). This intern implies that d(z) = 0 for all z ∈ Z(R). Replacing y
by ky where k ∈ S(R) ∩ Z(R) in (2.15) and using (2.15), we get

(2.16) 2([F (y), x∗]−F (y)◦x∗)k ∈ Z(R) for all x, y ∈ R and k ∈ S(R)∩Z(R).

Since char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), we obtain

(2.17) [F (y), x∗]− F (y) ◦ x∗ ∈ Z(R) for all x, y ∈ R.

Replacing x by x∗, we get

[F (y), x]− F (y) ◦ x ∈ Z(R) for all x, y ∈ R.

This can be further written as F (y)x−xF (y)−F (y)x−xF (y) ∈ Z(R) for x, y ∈ R.
This implies that −2xF (y) ∈ Z(R) for all x, y ∈ R. That is, xF (y) ∈ Z(R) for all
x, y ∈ R, since char(R) 6= 2. That is, [xF (y), r] = 0 for all x, y, r ∈ R. Replacing r
by x, we get

(2.18) x[F (y), x] = 0 for all x, y ∈ R.
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Replacing y by yx we get x[F (y), x]x+xy[d(x), x] +x[y, x]d(x) = 0 for all x, y ∈ R.
using (2.18), we get xy[d(x), x] + x[y, x]d(x) = 0 for all x, y ∈ R. Taking y = x, we
have

(2.19) x2[d(x), x] = 0 for all x ∈ R.

Replacing x by x + z where z ∈ Z(R) and using d(z) = 0 for all z ∈ Z(R), we
obtain (z2 + 2xz)[d(x), x] = 0 for all x ∈ R and z ∈ Z(R). Left multiplying by x we
get z2x[d(x), x] + x2[d(x), x]2z = 0 for all x ∈ R and z ∈ Z(R). Using (2.19), we
get z2x[d(x), x] = 0 for all x ∈ R and z ∈ Z(R). Now using the primeness and the
fact that S(R) ∩ Z(R) 6= (0), we get

(2.20) x[d(x), x] = 0 for all x ∈ R.

Replacing x by x+ z and using d(z) = 0 for all z ∈ Z(R), we get z[d(x), x] = 0 for
all x ∈ R and z ∈ Z(R). Using primeness and the fact that S(R) ∩ Z(R) 6= (0), we
finally arrive at [d(x), x] = 0 for all x ∈ R. Thus by the result of Posner [16], we
get R is commutative.

Now we consider the case

(2.21) [F (x), x∗] + x ◦ x∗ ∈ Z(R) for all x ∈ R.

Using the same steps as we did in the above case, we get

[F (y), x∗] + F (y) ◦ x∗ ∈ Z(R) for all x, y ∈ R.

Replacing x by x∗, we have

[F (y), x] + F (y) ◦ x ∈ Z(R) for all x, y ∈ R.

This can be further written as

F (y)x− xF (y) + F (y)x+ xF (y) ∈ Z(R) for all x, y ∈ R.

That is, 2F (y)x ∈ Z(R) for all x, y ∈ R. Since char(R) 6= 2, this implies that
F (y)x ∈ Z(R) for all x, y ∈ R. That is, [F (y)x, r] = 0 for all x, y, r ∈ R. This
intern implies that F (y)[x, r] + [F (y), r]x = 0 for all x, y, r ∈ R. Taking r = x, we
get

(2.22) [F (y), x]x = 0 for all x, y ∈ R.

Replacing y by yx, we arrive at

[F (y), x]x2 + y[d(x), x]x+ [y, x]d(x)x = 0 for all x, y ∈ R.

Using (2.22), we get

y[d(x), x]x+ [y, x]d(x)x = 0 for all x, y ∈ R.
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Replacing y by z where z ∈ Z(R). We obtain

(2.23) z[d(x), x]x = 0 for all x ∈ R and z ∈ Z(R).

Using the primeness and the fact that S(R) ∩ Z(R) 6= (0), we have [d(x), x]x = 0
for all x ∈ R. Replacing x by x+ z, where z ∈ Z(R), using (2.23) and the fact that
d(z) = 0 for all z ∈ Z(R), we get [d(x), x]z = 0 for all x ∈ R and z ∈ Z(R). This
further implies that [d(x), x] = 0 for all x ∈ R. Hence in view of Posner’s result [16],
we get R is commutative. 2

Theorem 2.11. Let R be a prime ring with involution of the second kind such
that char(R) 6= 2. If R admits a generalized derivation F : R → R associated with
a derivation d : R → R, such that F (x ◦ x∗) ∈ Z(R) for all x ∈ R. Then R is
commutative.

Proof. Proceeding on the similar lines as we did in the previous result, we get
F (x ◦ y∗) ∈ Z(R) for all x, y ∈ R (where d(Z(R)) = (0)). Replacing y by z∗

where z ∈ Z(R), we get 2F (x)z ∈ Z(R) for all x ∈ R and z ∈ Z(R). Using the
conditions that R is prime, char(R) 6= 2 and S(R) ∩ Z(R) 6= (0), we finally arrive
at F (x) ∈ Z(R) for all x ∈ R. This implies that [F (x), r] = 0 for all x, r ∈ R. Then
by the result [18], we get R is commutative. 2

At the end of paper, let us write an example which shows that the restriction
of the second kind involution in our results is not superfluous

Example 2.21. Let R =

{(
α1 α2

α3 α4

) ∣∣∣ α1, α2, α3, α4 ∈ Z2

}
. Of course R under

matrix addition and matrix multiplication is a noncommutative prime ring. Define
mappings F,D, ∗ : R −→ R such that

F

(
α1 α2

α3 α4

)
=

(
0 α2

α3 α4

)
,

D

(
α1 α2

α3 α4

)
=

(
0 α2

α3 α4

)
,(

α1 α2

α3 α4

)∗
=

(
α4 α2

α3 α1

)
.

Obviously,

Z(R) =

{(
α1 0
0 α1

) ∣∣∣ α1 ∈ Z2

}
.

Then x∗ = x for all x ∈ Z(R), and hence Z(R) ⊆ H(R), which shows that the
involution ∗ is of the first kind. Moreover, F , D are nonzero generalized derivation
and derivation such that the following conditions hold

(i) F (x) ◦ x∗ ∈ Z(R),

(ii) F ([x, x∗])± x ◦ x∗ ∈ Z(R),
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(iii) F (x ◦ x∗)± [x, x∗] ∈ Z(R),

(iv) F (x) ◦D(x∗)± x ◦ x∗ ∈ Z(R),

(v) [F (x), D(x∗)]± x ◦ x∗ ∈ Z(R),

(vi) F (x)± x ◦ x∗ ∈ Z(R),

(vii) F (x)± [x, x∗] ∈ Z(R),

(viii) [F (x), x∗]∓ F (x) ◦ x∗ ∈ Z(R),

(ix) F (x ◦ x∗) ∈ Z(R),

for all x ∈ R. However, R is not commutative. Hence, the hypothesis of second
kind involution is crucial in our results.
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