• Title/Summary/Keyword: moving-average model

검색결과 427건 처리시간 0.024초

Statistical Inference for Space Time Series Model with Application to Mumps Data

  • Jeong, Ae-Ran;Kim, Sun-Woo;Lee, Sung-Duck
    • Journal of the Korean Data and Information Science Society
    • /
    • 제17권2호
    • /
    • pp.475-486
    • /
    • 2006
  • Space time series data can be viewed either as a set of time series collected simultaneously at a number of spatial locations or as sets of spatial data collected at a number of time points. The major purpose of this article is to formulate a class of space time autoregressive moving average (STARMA) model, to discuss some of the their statistical properties such as model identification approaches, some procedure for estimation and the predictions. For illustration, we apply this STARMA model to the mumps data. The data set of mumps cases consists of the number of cases of mumps reported from twelve states monthly over the years 1969-1988.

  • PDF

식중독 발생 예측모형 (Models for forecasting food poisoning occurrences)

  • 여인권
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1117-1125
    • /
    • 2012
  • 식중독 발생에 대한 기존 연구에서는 기온과 습도와 같은 기후변수가 주된 설명변수로 취급되어 왔다. 이 논문에서는 주별 식중독 발생건수와 기후변수 간에 관계를 고찰하고 식중독 발생건수를 예측하기 위한 모형으로 포아송 회귀모형과 자기회귀이동평균모형을 비교한다. 비교결과 우리나라 식중독 발생은 시차를 두고 기후 변수에 영향을 많이 받고 있으나 식중독 발생 예측은 이들 변수보다 이전 시점의 식중독 발생 건수에 더 많이 영향을 받는 것으로 나타났으며 포아송 회귀모형은 예측의 관점에서 문제가 있음을 보였다.

Forecasting Internet Traffic by Using Seasonal GARCH Models

  • Kim, Sahm
    • Journal of Communications and Networks
    • /
    • 제13권6호
    • /
    • pp.621-624
    • /
    • 2011
  • With the rapid growth of internet traffic, accurate and reliable prediction of internet traffic has been a key issue in network management and planning. This paper proposes an autoregressive-generalized autoregressive conditional heteroscedasticity (AR-GARCH) error model for forecasting internet traffic and evaluates its performance by comparing it with seasonal autoregressive integrated moving average (ARIMA) models in terms of root mean square error (RMSE) criterion. The results indicated that the seasonal AR-GARCH models outperformed the seasonal ARIMA models in terms of forecasting accuracy with respect to the RMSE criterion.

이노베이션 상관관계 테스트를 이용한 잡음인식 (Identification of Noise Covariance by using Innovation Correlation Test)

  • 박성욱
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1992년도 하계학술대회 논문집 A
    • /
    • pp.305-307
    • /
    • 1992
  • This paper presents a technique, which identifies both process noise covariance and sensor noise covariance by using innovation correlation test. A correlation test, which checks whether the square root Kalman filter is workingly optimal or not, is given. The system is stochastic autoregressive moving-average model with auxiliary white noise Input. The linear quadratic Gaussian control is used for minimizing stochastic cost function. This paper indentifies Q, R, and estimates parametric matrics $A(q^{-1}),B(q^{-1}),C(q^{-1})$ by means of extended recursive least squares and model reference control. And The proposed technique has been validated in simulation results on the fourth order system.

  • PDF

Advanced Process Control of the Critical Dimension in Photolithography

  • Wu, Chien-Feng;Hung, Chih-Ming;Chen, Juhn-Horng;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권1호
    • /
    • pp.12-18
    • /
    • 2008
  • This paper describes two run-to-run controllers, a nonlinear multiple exponential-weight moving-average (NMEWMA) controller and a dynamic model-tuning minimum-variance (DMTMV) controller, for photolithography processes. The relationships between the input recipes (exposure dose and focus) and output variables (critical dimensions) were formed using an experimental design method, and the photolithography process model was built using a multiple regression analysis. Both the NMEWMA and DMTMV controllers could update the process model and obtain the optimal recipes for the next run. Quantified improvements were obtained from simulations and real photolithography processes.

Economic Design of a Moving Average Control Chart with Multiple Assignable Causes when Two Failures Occur

  • Cben, Yun-Shiow;Yu, Fong-Jung
    • International Journal of Quality Innovation
    • /
    • 제2권1호
    • /
    • pp.69-86
    • /
    • 2001
  • The economic design of control charts has been researched for over four decades since Duncan proposed the concept in 1956. Few studies, however, have focused attention on the economic design of a moving average (MA) control chart. An MA control chart is more effective than the Shewhart chart in detecting small process shifts [9]. This paper provides an economic model for determining the optimal parameters of an MA control chart with multiple assignable causes and two failures in the production process. These parameters consist of the sample size, the spread of the control limit and the sampling interval. A numerical example is shown and the sensitivity analysis shows that the magnitude of shift, rate of occurrence of assignable causes and increasing cost when the process is out of control have a more significant effect on the loss cost, meaning that one should more carefully estimate these values when conducting an economic analysis.

  • PDF

Poisson linear mixed models with ARMA random effects covariance matrix

  • Choi, Jiin;Lee, Keunbaik
    • Journal of the Korean Data and Information Science Society
    • /
    • 제28권4호
    • /
    • pp.927-936
    • /
    • 2017
  • To analyze longitudinal count data, Poisson linear mixed models are commonly used. In the models the random effects covariance matrix explains both within-subject variation and serial correlation of repeated count outcomes. When the random effects covariance matrix is assumed to be misspecified, the estimates of covariates effects can be biased. Therefore, we propose reasonable and flexible structures of the covariance matrix using autoregressive and moving average Cholesky decomposition (ARMACD). The ARMACD factors the covariance matrix into generalized autoregressive parameters (GARPs), generalized moving average parameters (GMAPs) and innovation variances (IVs). Positive IVs guarantee the positive-definiteness of the covariance matrix. In this paper, we use the ARMACD to model the random effects covariance matrix in Poisson loglinear mixed models. We analyze epileptic seizure data using our proposed model.

버스정보기반 통행속도 추정에 관한 연구 (A Study on the Travel Speed Estimation Using Bus Information)

  • 빈미영;문주백;임승국
    • 한국ITS학회 논문지
    • /
    • 제12권4호
    • /
    • pp.1-10
    • /
    • 2013
  • 본 연구는 버스정보가 도로의 통행속도 정보로 활용될 수 있는지를 검토하기 위한 연구이다. 도로통행속도를 파악하기 위해 설치된 지점검지기, 구간검지기로부터 수집되는 정보와 경기도에서 수집되는 버스정보를 속도정보로 가공하여 비교하였다. 버스정보가 교통정보 검지기의 기능을 할 수 있다면, 통행속도 정보를 제공할 수 있다. 이를 위해서는 도로구간의 교통류에 대한 패턴을 인식할 필요가 있다. 본 연구에서는 새로운 접근방법보다는 기존에 검증된 방법을 중심으로 버스정보를 이용한 교통류 패턴 인식 방법을 적용하여 버스정보의 활용 가능성을 제시하였다. 또한 버스정보를 이용하여 모형을 추정하였는데, 단순이동, 지수평활법과 이중이동, 이중지수평활법, ARIMA(p,d,q)모형을 적용하였다. 이 모형들은 평가지표인 100-MAPE, MAE, EC로 비교한 결과 상호 비슷한 결과를 나타냈으나, 단순평균이동법이 가장 우수한 결과를 나타냈다. 이로서 버스정보를 구간의 통행속도로 이용할 경우, 모형의 추정도 가능하다는 것을 확인하였다.

시계열 분석을 이용한 가스사고 발생 예측 연구 (The Study of Prediction Model of Gas Accidents Using Time Series Analysis)

  • 이수경;허영택;신동일;송동우;김기성
    • 한국가스학회지
    • /
    • 제18권1호
    • /
    • pp.8-16
    • /
    • 2014
  • 본 연구에서는 국내에서 발생한 가스사고를 분석하여 가스사고의 건수예측모델에 대하여 제시하였다. 가스사고 건수를 예측하기 위하여 단순이동평균법(3,4,5기간), 가중이동평균법 및 지수평활법을 적용해 본 결과, 4기간 이동평균법과 가중이동평균법에 의한 모델의 평균오차제곱합이 44.4와 43으로 가장 정확성이 높은 것으로 나타났다. 가스사고 발생건수 예측시스템을 개발함으로서 가스사고 예방활동에 적극 활용할 수 있을 것이다.